Растительные ткани. Основные и образовательные ткани растений Какая растительная ткань обеспечивает рост цветковых растений

Отдел Покрытосеменные (цветковые)

Покрытосеменные, или цветковые, растения в настоящее время господствуют в растительном покрове Земли. Их насчитывают около 250 тыс. видов.

Покрытосеменные - наиболее высокоорганизованные растения. Они представлены разными жизненными формами - деревьями, кустарниками, травами; имеют различную продолжительность жизни - однолетние, двулетние, многолетние.

Их широкое распространение, многообразие и приспособленность к различным условиям внешней среды связаны с рядом прогрессивных черт, которые они приобрели в процессе эволюции:

· наличие органа полового размножения - цветка;

· максимальная редукция гаметофитов. Архегонии и антеридии не образуются;

· двойное оплодотворение, в результате которого формируется диплоидный зародыш и триплоидный (3n) эндосперм;

· расположение семяпочек в завязи пестика, развитие плода из завязи, а семян - внутри плода (откуда и их название - «покрытосеменные»);

· усложнение и дифференцировка вегетативных органов и тканей и проводящей системы (ксилема представлена трахеями);

· симподиальное ветвление, что обеспечивает большую поверхность для ассимиляции и испарения.

Ткани растений

Ткань – группа клеток, имеющих сходное строение, единое происхождение и выполняющих одинаковую функцию.

1. Образовательная ткань (меристема). Образовательными называются ткани, клетки которых сохраняют длительную способность к делению, обеспечивая рост растения и отдельных его органов. Представлена молодыми живыми тонкостенными клетками с крупным ядром и густой цитоплазмой. Активно делятся митозом.

С учетом положения в теле растения образовательные ткани делят на:

1. верхушечные (апикальные) - находится на конусах нарастания корня и побега – обеспечивают рост в длину

2. вставочные (интеркалярные) - свойственны побегу - находятся у основания стеблевых междоузлий между зонами дифференцированных тканей – обеспечивают рост растения в длину после прекращения верхушечного роста;

3. боковые (прокамбий, перицикл и камбий - представлены в корне и стебле голосеменных и двудольных покрытосемянных, обеспечивают рост стебля в толщину).

1. верхушечная меристема

2. вставочная меристема

3. боковая меристема

2. Основная ткань, или паренхима. Основные ткани состоят из живых паренхимных клеток, разнообразных по форме. Клетки обычно тонкостенные, с простыми порами, но иногда их оболочки утолщаются и одревесневают. Основная ткань в противоположность другим очень богата межклеточными пространствами.

Выделяют несколько видов основной ткани:


· Ассимиляционная паренхима (мякоть листа, зеленые стебли) осуществляет фотосинтез и состоит из тонкостенных живых клеток с большим количеством хлоропластов. Образует столбчатую и губчатую паренхимные ткани.

· Водоносная паренхима . Назначение этой ткани – запасание воды. Крупноклеточная тонкостенная водоносная паренхима имеется в стеблях и листьях растений – суккулентов (кактусы, агавы, алоэ) и растений засолённых местообитаний (солерос). Крупные водоносные клетки встречаются в листьях злаков. В вакуолях клеток водоносной паренхимы есть слизистые вещества, способствующие удержанию влаги.

· Воздухоносная паренхима (аэренхима). Паренхиму со значительно развитыми межклетниками называют аэренхимой. Она хорошо развита в разных органах водных и болотных растений, но встречается и у сухопутных видов. Назначение аэренхимы – снабжение тканей воздухом для обеспечения плавучести растений.

· Запасающая паренхима выполняет функцию хранения и запаса питательных веществ. Обычно сосредоточена в сердцевине многолетних стеблей, в луковицах, клубнях и корневищах, в плодах и семенах. В качестве запасных веществ, откладывающихся в тканях запасающей паренхимы, могут быть крахмал и другие сахара, белки и жиры.

3. Покровная ткань (эпидерма, пробка и корка). Покровные ткани предохраняют органы растения от высыхания, от температурных воздействий, механических повреждений, болезнетворных бактерий и вирусов и других неблагоприятных воздействий окружающей среды. Осуществляют всасывание и выделение воды и других веществ. Через покровные ткани стебля осуществляется газообмен. В эпидерме он происходит через устьица.

· Эпидермис (эпидерма) или кожица,- живая ткань. Представляет собой плотно сомкнутые живые клетки с утолщенными клеточными стенками. Клетки ее содержат цитоплазму, ядро, вакуоли, лейкопласты и нередко - хлоропласты. Эпидерма имеет ряд придаточных образований в виде кутикулы, воскового налета, различных волосков. Покрывает листья, зеленые стебли, части цветка.

· Пробка - вторичная покровная ткань - возникает на месте эпидермы, покрывает стебли и корни многолетних растений. Клетки ее мертвы, пропитаны жироподобным веществом и непроницаемы для воды и газов. Газообмен растения осуществляется через чечевички.

· Комплекс отмерших пробки и основной ткани образует корку (кору) - наружный слой ветвей, стволов и корней старых деревьев.

4. Проводящая ткань (ксилема и флоэма). Обеспечивает проведение ко всем частям растения воды, растворов минеральных солей и органических веществ.

Ксилема , по которой идёт восходящий ток воды и минеральных веществ от корней к стеблям и листьям, образована мёртвыми, разными по величине клетками. Цитоплазмы в них нет, стенки одревеснели и снабжены многочисленными порами. Представляют собой цепочки из прилегающих друг к другу длинных мёртвых водопроводящих клеток. В местах соприкосновения у них имеются поры (рис.4), по которым и передвигаются растворы из клетки в клетку по направлению к листьям. Поры часто окаймлены мембраной, в результате чего ток жидкости в них медленный. Так устроены трахеиды (рис.2). У большинства хвощевидных, плауновидных, папоротниковидных и голосеменных они являются единственными проводящими элементами ксилемы. Благодаря прочным стенкам трахеиды выполняют также механические функции.

У цветковых растений появляются и более совершенные проводящие ткани - сосуды (трахеи) (рис.1). В сосудах поперечные стенки клеток в большей или меньшей степени разрушаются, и представляют собой полые трубки. Таким образом, сосуды - это соединения многих мёртвых трубчатых клеток, называемых члениками. Располагаясь друг над другом, они образуют трубочку. По таким сосудам растворы передвигаются быстро.

Ситовидные трубки (элемент флоэмы (луба)) осуществляют нисходящий ток - передвижение органических веществ (продуктов ассимиляции) от листьев к корням, стеблям и цветкам. Это живые вытянутые клетки, содержащие цитоплазму и лишенные ядер. Их поперечные перегородки пронизаны отверстиями. Ситовидные трубки обычно расположены пучками и следуют параллельно сосудам

5 - ситовидные трубки;

6 – клетки – спутницы;

7 – ситовидные поля;

8 – клетки лубяной паренхимы.

5. Механические ткани. Основное назначение – обеспечить механическую прочность различным органам растения. Они очень хорошо развиты у растений, растущих в воздушной среде. Состоят из клеток с толстыми стенками, часто одревесневшими. Различают два вида механической ткани – колленхиму и склеренхиму.

· Колленхима, первичная механическая ткань, развита главным образом в растущих стеблях, черешках и листьях двудольных растений. Образована живыми, вытянутыми в длину клетками, часто содержащими хлоропласты. Клеточные стенки неравномерно утолщены.

· Склеренхима – наиболее важная механическая ткань высших растений. Образована клетками с равномерно утолщенными, часто одревесневшими стенками. Живое содержимое отмирает рано, и опорную функцию выполняют мертвые клетки, которые называют волокнами. Различают лубяные волокна (во вторичном приросте луба, или флоэмы) и древесинные волокна (во вторичной древесине, или ксилеме).

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Стебель вырастает из зачаточного стебля почки. Если это главный стебель растения, то он развивается из зародышевой почечки семени.

После того, как почки набухают и у них раздвигаются защитные чешуйки, начинает расти стебель и разворачиваться листочки. У растущего из почки стебля постепенно увеличивается длина междоузлий.

На самом верху побега находится так называемая верхушечная почка. В ней есть конус нарастания . Деление клеток конуса нарастания приводит к росту стебля в длину.

Конус нарастания состоит из образовательной ткани . Ее клетки способны к постоянному делению.

На более нижних клетках конуса нарастания появляются зачаточные листья, клетки стебля перестают делится и начинают расти. В результате растет сам стебель, и получается что он растет своей верхней частью. Так если нанести на всю длину стебля метки, то через некоторое время расстояние между метками на его верхушке увеличится, так как здесь клетки продолжают расти в длину. В то время как ниже по стеблю расстояние между метками может не измениться.

Однако стебли растут в длину не всегда только за счет конуса нарастания. У многих растений наблюдается вставочный рост , при котором удлиняются междоузлия побега. Обычно при этом делятся и растут клетки оснований междоузлий.

Если у стебля удалить его верхушку вместе с конусом нарастания, то прекратится его рост в длину. Но при этом стебель начнет ветвится, т. е. начнут вырастать боковые побеги.

Рост стебля в толщину

Рост стебля в толщину обеспечивается за счет деления клеток камбия. Рост в толщину наблюдается у деревьев и кустарников, а также у многолетних трав. У деревьев камбий находится под корой. Камбий состоит из образовательной ткани.

Рост стебля в толщину происходит в благоприятный период года. В умеренных широтах это происходит в теплый период. В это время клетки камбия активно делятся.

У деревьев те клетки камбия, которые находятся ближе к коре, становятся клетками луба. Те, что ближе к древесине, становятся древесиной. При этом за вегетационный сезон у дерева клеток древесины образуется больше, чем клеток луба.

В древесине, которая нарастает весной, развиваются достаточно толстые сосуды с тонкими стенками. Сосуды же осенней древесины, наоборот, тонкие с более толстыми оболочками.

Поскольку зимой стебель в толщину не растет, а весной начинают образовываться снова крупные клетки, то на спиле ствола видны отчетливые переходы от мелких клеток к крупным. Клетки древесины одного года называются годичным кольцом . По количеству годовых колец можно определить возраст дерева.

Годичные кольца разных лет могут отличаться между собой. Одни могут быть более узкие, другие - более широкие. Такое различие обусловлено разными погодными условиями. Если год был хороший, дерево получало достаточно влаги и света, то годовое кольцо будет широким. Также ширина каждого отдельно взятого годового кольца не одинакова. С южной стороны кольца обычно шире, чем с северной. Это связано с тем, что с северной стороны камбий обычно меньше прогревается, и поэтому хуже делятся его клетки.

Основное содержание.

  1. Что такое меристема?
  2. Классификация меристематических (образовательных) тканей.
  3. Характеристика апекальной (верхушечной) меристемы
  4. Обсуждение результатов домашней лабораторной работы.
  5. Характеристика интеркалярной (вставочной) меристемы

Вы никогда не задумывались, почему растения получили такое название – РАСТЕНИЯ?

Всё потому, что они обладают уникальной способностью расти всю свою жизнь. Это для них жизненно важно. Подавляющее большинство растений не имеет возможности переместиться в более выгодное место, но они нашли выход – расти – тянуться к солнечному свету, к источнику воды и минеральных веществ. Растения умеренного климата сбрасывают листья на зиму, а весной они снова появляются и так из года в год, до самой гибели организма.

У многоклеточных растений в отличие от животных рост (за исключением ранних стадий развития зародыша) происходит лишь в определённых участках, называемых меристемами и продолжается всю жизнь организма, отсюда и происходит название РАСТЕНИЯ.

Меристема (образовательная ткань) – это группа клеток, сохраняющих способность к митотическому делению, в результате этого деления образуются дочерние клетки, которые растут и формируют постоянную ткань из клеток, уже не способных делиться.

Часть клеток меристемы сохраняет способность делиться (инициальные ), часть постепенно дифференцируется, превращаясь в клетки различных постоянных тканей. Т.о. инициальные клетки меристемы задерживаются на эмбриональной стадии развития в течение всей жизни растения (стволовые клетки), а их производные постепенно дифференцируются (см. схема 1).

Тело растений – производное относительно немногих инициальных клеток.

Меристемы могут сохраняться очень долго, в течение всей жизни растения (у некоторых деревьев тысячи лет), т.к. содержат некоторое число инициальных клеток, способных делиться неопределённое число раз с сохранением меристематического характера.

Классификация меристем

Прокамбий – образование первичной ксилемы и первичной флоэмы.

Перицикл – образует камбий и феллоген.

Феллоген – пробковый камбий. Расположен между феллемой (пробкой) и феллодермой, образует комплекс перидермы (феллоген, феллема, феллодерма).

Существенное отличие этих групп растительных тканей заключается в направлении деления клеток по отношению к поверхности органа.

У первичных меристем клетки делятся в поперечном, радиальном и тангентальном (параллельном поверхности) направлении – поэтому клетки лежат беспорядочно.

У вторичных меристем – только в тангентальном, поэтому клетки лежат чёткими рядами.

Схема расположения различных меристем в растении (по В.Х. Тутаюк).

1 – апикальные (верхушечные)

2 – интеркалярные (вставочные)

3 — латеральные (боковые)

Типы меристем и их функции.

Меристемы

Месторасположение

Роль

Результат

Апикальная (верхушечная)

Апекс –лат. верхушка

В кончиках корней и побегов

Обеспечивает первичный рост, образуя первичное тело растения

Удлинение

Латеральная (камбий)

(боковая)

В более старых частях растения; лежит параллельно длинной оси органа (например, пробковый камбий – феллоген, васкулярный (сосудистый) камбий)

Обеспечивает вторичный рост. Васкулярный камбий даёт начало вторичным проводящим тканям; из феллогена образуется перидерма (корка), которая замещает эпидермис и содержит пробку

Утолщение

Интеркалярная (вставочная)

Между участками постоянных тканей, например, в узлах у многих однодольных (в основании листьев у злаков)

Делает возможным рост в длину в промежуточных участках. Это существенно для тех растений, у которых апикальные участки часто подвергаются повреждению или разрушению, например объедаются травоядными животными (у злаков) или повреждаются волнами (у бурых водорослей); при этом отпадает необходим необходимость в ветвлении

Удлинение

Пояснения. У растений к увеличению длины и толщины приводят два типа роста: первичный и вторичный. Сначала происходит первичный рост. В результате первичного роста может сформироваться целое растение, и у большинства однодольных и травянистых двудольных это единственный тип роста. Нарастание в длину – первичный рост. В первичном росте участвуют апикальная (верхушечная), а иногда и интеркалярная (вставочная) меристемы.

У некоторых растений (двудольные и голосеменные) за первичным ростом следует вторичный рост, в котором участвуют латеральные (боковые) меристемы. Он в наибольшей степени выражен у кустарников и деревьев. (У некоторых травянистых растений наблюдается некоторое вторичное утолщение стебля, например, развитие добавочных проводящих пучков у подсолнечника). Первичные меристемы характерны для всех многоклеточных растений (начиная с бурых водорослей). Вторичные – для двудольных покрытосеменных и голосеменных.

Апикальные меристемы. Для апикальной меристемы характерны (типичны) относительно мелкие кубовидные клетки с тонкой целлюлозной стенкой и густой цитоплазмой. Ядро крупное располагается в центре клетки. В цитоплазме имеется несколько небольших вакуолей (в отличие от крупных вакуолей клеток основной ткани), а также содержится мелкие недифференцированные пластиды, называемые пропластидами. Митохондрии многочисленны, их оболочка складчатая и поэтому они могут увеличиваться в размерах. Меристематические клетки плотно упакованы, т.ч. между ними нет заметных воздухоносных межклетников.

В зоне роста дочерние клетки, образующиеся в результате деления инициалей, увеличиваются в размерах – главным образом за счёт осмотического поглощения воды, поступающей в цитоплазму, а из неё – в вакуоли. Рост стеблей и корней в длину достигается в основном за счёт проходящего на этой стадии удлинения клеток. Мелкие вакуоли увеличиваются в размерах и сливаются, в конце концов, в одну большую вакуоль.

Стадия растяжения в росте меристематической клетки

Лабораторная работа №1: «Рост корня в длину».

Оборудование: проросшие семена гороха, фасоли или бобов с корнем длиной около2 см.; небольшая баночка (из-под майонеза, сока); кусок картона; плотная ткань или промокательная бумага; полиэтиленовая плёнка или крышка; чёрная тушь, предварительно налитая в крышечку и слегка загустевшая в результате частичного высыхания; линейка; заострённая спичка; канцелярские булавки.

Опыт . Для опыта надо приготовить влажную камеру. На дно банки налить воду слоем 0,5 –1 см., установить картонную стенку, лучше всего двухслойную. Высота стенки должна быть чуть ниже банки, ширина – по диаметру отверстия банки.

Нижний край картонки надо вырезать в форме выпуклого дна банки. На обе стороны картонной стенки наложить промокательную бумагу или плотную ткань. По ней будет подниматься вода со дна банки. Для опыта надо отобрать 2 – 3 проросших семени с более или менее прямыми корнями, без признаков повреждения и начала образования боковых корней. Тонко заточенной спичкой по всей длине корня нанести (по одной стороне) метки тушью в виде небольших, но хорошо заметных точек или коротких чёрточек на расстоянии 1,5 –2 ммодна от другой. Семя при этом держите за семядоли, прикосновение к корню концом спички должно быть очень лёгким, особенно у го кончика. Начинать разметку лучше с основания корня. Затем семена с размеченными корнями прикрепите к картонной стенке с помощью булавок (на картон прикалываются булавками обе семядоли) так, чтобы корни касались влажного картона на высоте 3 –4 смнад водой.

Банку закрыть крышкой или полиэтиленовой плёнкой и поставить в светлое и тёплое место. Чтобы стенки банки не запотевали, можно протереть их ватным тампоном, пропитанным смесью глицерина с водой в пропорции 1:1.

Результаты. Через 2 дня убедитесь, что метки заметно раздвинулись только у кончика корня.

Ответьте на вопросы:

  • Почему метки надо наносить по всему корню, а не на какую-то его часть?
  • Почему расстояния между метками должны быть одинаковыми и небольшими?

Интеркалярные (вставочные) меристемы . Вставочные меристемы располагаются в основаниях междоузлий; обеспечивают рост стебля в длину (за счет удлинения междоузлий) и рост листа.

Интеркалярная (вставочная) меристема в основании междоузлия растения

Основные выводы: во время разрастания и развития клеток, образованных меристемой, начинают образовываться межклеточные пространства. С отдалением от верхушек стеблей и кончиков корней происходит замедление, а затем и прекращение клеточных делений.

Различают три последовательные фазы изменения молодых клеток:

1) фаза деления, вызываемая усиленным приростом живого вещества протопласта (внутреннего содержимого клетки),

2) фаза усиленного разрастания клеточных оболочек, за которым не поспевает прирост вещества протопласта, но зато появляется в изобилии клеточный сок, первоначально во многих отдельных вакуолях, которые вскоре сливаются в одну большую вакуоль;

3) фаза детерминации, когда клетки становятся специализированными для выполнения определённых функций. В последнем случае мы наблюдаем превращение первичной образовательной ткани в постоянную ткань.

Основные понятия: меристема, инициаль, апекс, апикальные меристемы, латеральные меристемы, интеркалярные меристемы, первичный рост, вторичный рост.

Вопросы и задания для повторения:

  1. Каковы функции образовательных тканей?
  2. Какие меристемы являются первичными, какие – вторичными? Почему?
  3. Скорость деления клеток образовательной ткани практически одинакова у всех растений. однако одни растут со скоростью 0,7 см в сутки, а другие, например бамбук, — до 1 м в сутки. Почему между отдельными видами растений существует такая значительная разница в темпах роста?

Образовательные ткани

Функция этих тканей — образование новых клеток путем деления. Образовательная ткань состоит из мелких клеток с крупными ядрами и без вакуолей. Клетки этой ткани постоянно делятся. Одна часть дочерних клеток, дорастая до размеров материнской, снова делится, а другая часть постепенно превращается в клетки постоянных тканей. Постоянными называют все ткани, кроме образовательных. Клетки постоянных тканей обычно не способны делиться. Образовательные ткани располагаются на кончике корня и на верхушке стебля. Они обеспечивают постоянный рост растения в длину.

Внутри корней и стеблей присутствует кольцо образовательной ткани из удлиненных клеток. Его называют камбием. Камбий обеспечивает разрастание корней и стеблей в толщину.

Покровные ткани

Эти ткани снаружи покрывают органы растения и защищают их от вредных воздействий окружающей среды. Растениям необходима защита, так как они неподвижны и не могут убежать или спрятаться от вредителей, дождя, ветра, снега. Кроме того, покровные ткани защищают органы растений от высыхания.

У растений есть несколько видов покровных тканей. Листья и мо-лодые зеленые стебли покрыты кожицей, которая состоит из одного слоя прозрачных клеток. Прозрачность покровной ткани очень важна, так как, защищая орган, кожица не мешает попаданию света в лежа-щие глубже клетки с хлоропластами. Защитные свойства кожицы оп-ределяются тем, что ее клетки плотно сомкнуты, наружная оболочка клеток утолщена и покрыта сверху жировидным веществом, а иногда еще и воском. Это защищает органы от высыхания и проникновения внутрь грибов и бактерий, которые вызывают болезни растений.

Однако растение не может быть полностью отделено от воздуш-ной среды. Ему постоянно необходимы кислород для дыхания клеток и углекислый газ для фотосинтеза. Кроме того, растение постоянно испаряет воду. Иными словами, в растении все время должен проис-ходить газообмен. Кожица не препятствует этому, потому что в ней есть специальные образования для газообмена — устьица.

Устьице — это щель, окруженная двумя замыкающими клет-ками, которые, в отличие от клеток кожицы, имеют бобовидную форму. Устьица могут открываться и закрываться. Замыкающие клетки при этом расходятся или сближаются. Под устьицами на-ходятся межклетники, по которым воздух доходит ко всем клеткам листа или молодого стебля.

У многих растений (особенно у древесных) стебель покрыт другой покровной тканью — пробкой. Это многослойная ткань. Клетки ее плотно сомкнуты. Их живое содержимое отмирает, а полости клеток заполняются воздухом. Пробка — гораздо более надежная защита для растения, чем кожица.

У некоторых деревьев (пробковый дуб) слой пробки может быть очень толстым, до 20—30 см. Пробку с таких деревьев время от времени срезают. Ее используют для изготовления бутылочных пробок и звуковой изоляции. Именно такую пробку рассматривал Р. Гук под микроскопом.

Газообмен растений, покрытых пробкой, происходит через че-чевички. Чечевички — это разрывы в пробке, через которые воздух проникает внутрь стебля.

Опорные, или механические ткани

Сильно расчлененное тело растения требует опоры. Поддержи-вают и укрепляют органы растения опорные ткани. Характерной особенностью этих тканей является сильное утолщение клеточных стенок, которые обеспечивают выполнение их функций. Часто кле-точные оболочки одревесневают, и живое содержимое клетки отми-рает. Клетки опорной ткани могут иметь вытянутую форму, тогда их называют волокнами, но могут быть и округлыми. Однако в любом случае их клеточные оболочки очень толстые. Часто бывает так, что толщина оболочки опорной клетки больше, чем размер ее полости. Такие клетки образуют склеренхиму.

Колленхима — паренхимная механическая ткань, клетки которой на поперечном разрезе имеют разнообразную форму, близкую к 4—5 гранной, а на продольном несколько вытянуты по оси. Появляется только как первичная ткань и служит для укрепления молодых стеблей и листьев, когда продолжается растяжение клеток в длину.

Проводящие ткани

В растениях есть два типа проводящих тканей. Одна ткань со-стоит из сосудов и проводит воду и минеральные вещества из корней в листья. Ее называют ксилемой. Другая ткань состоит из ситовид-ных клеток, которые проводят питательные вещества, образующиеся в листьях во время фотосинтеза, вниз по растению. Эту ткань назы-вают флоэмой. Сосуды образуются из ряда клеток, которые растут, вытягиваются, оболочки их одревесневают, живое содержимое отмирает, а поперечные стенки разрушаются. Получаются трубки, а на месте поперечных перегородок остаются узкие ободки, по ко-торым можно определить, что сосуды образовались из ряда клеток. Ситовидные клетки имеют удлиненную форму, которая способствует проведению веществ. В поперечных клеточных оболочках образуется множество мелких отверстий, что делает их похожими на ситечко. Отсюда название клеток — ситовидные. Отверстия облегчают прохож-дение питательных веществ из одной ситовидной клетки в другую.

Ассимилирующие ткани осуществляют процесс фотосинтеза, поэтому их еще называют фотосинтезирующими тканями. Их клетки имеют округлую или слегка вытянутую форму. Они сомкнуты или имеют межклетники. Ассимилирующие ткани, в основном, находят-ся в листе, но зеленые клетки встречаются и в молодых стеблях.

Запасающие ткани

В этих тканях откладываются в запас питательные вещества, которые образовались в ассимилирующих тканях. Клетки этих тка-ней крупные, иногда очень большие. Например, если вы разломите зрелое яблоко или зрелый помидор, то на разломе увидите мелкие пузырьки. Это крупные клетки запасающей ткани, в вакуолях которых откладываются различные растворенные в воде вещества, в том числе и сахар. Но питательные вещества могут находиться и цитоплазме, и лейкопластах в твердом состоянии. Например, в клубнях картофеля или зернах пшеницы откладывается крахмал.

Основная ткань

Клетки этой ткани заполняют промежутки между специализированными тканями. Ее клетки могут быть крупными или мелкими, с тонкими или утолщенными оболочками, плотно сомкнутыми или с межклетниками. Основная ткань в разных органах растений может выполнять различные функции: ассимилирующую, запасающую, опорную.

Библиография:

1. Г.Ю. Вервес, Н.Н. Балан. Біологія. Підручник для 7 класу загальноосвітніх навчальних закладів. - К.: "Освіта", 2008.

2. Шабанов Д.А., Шабанова Г.В. Біологія. Підручник для 7 класу загальноосвітніх навчальних закладів. - Х.: "Освіта", 2003.

3. Яковлев Г.П., Челомбитько В.А. Ботаника. М.: Спектр, 1990.