Изобретения русов - линейный генератор. Скоромец Ю.Г. Линейный двигатель на транспортном средстве Линейный электрогенератор с подвижной катушкой

Изобретение относится к электротехнике, линейным генераторам, обеспечивающим выработку электрической энергии. Технический результат состоит в повышении стабильности и эффективности выработки электроэнергии при упрощении конструкции и уменьшении объема и веса. Линейный генератор имеет конструкцию гидродинамического цилиндра для возвратно-поступательного движения поршня (6) в цилиндре (1) в осевом направлении посредством поочередного приложения давления текучей среды к поршню (6) в левой гидродинамической камере (4) в контакте с левой концевой стенкой (2) цилиндра (1), и давления текучей среды в правой гидродинамической камере (5) в контакте с правой концевой стенкой цилиндра (1). Постоянный магнит (9) сформирован между левой нажимной поверхностью (7) в контакте с левой гидродинамической камерой (4) поршня (6), и правой нажимной поверхностью (8) в контакте с правой гидродинамической камерой (5) поршня (6). Электроиндукционная катушка (11) установлена над левой и правой гидродинамическими камерами (4, 5), сформирована на цилиндрической стенке между левой и правой концевыми стенками (2,3) цилиндра (1) так, что выработка электроэнергии в электроиндукционной катушке обеспечивается посредством возвратно-поступательного движения в аксиальном направлении поршня (6), имеющего постоянный магнит. 4 з.п. ф-лы, 11 ил.

Рисунки к патенту РФ 2453970

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к линейному генератору, который обеспечивает выработку электроэнергии между поршнем и цилиндром, составляющими гидродинамический цилиндр.

УРОВЕНЬ ТЕХНИКИ

Патентный Документ 1 раскрывает систему выработки электроэнергии, в которой свободно-поршневой двигатель (гидродинамический цилиндр) и линейный генератор объединены друг с другом для выработки электроэнергии.

Аналогично цилиндровой конструкции автомобильного двигателя свободно-поршневой двигатель (гидродинамический цилиндр), составляющий систему выработки электроэнергии, представляет собой цилиндр неразделенной камеры сгорания, содержащий камеру сгорания (гидродинамическая камера), предоставленную только на одном конце цилиндра. Процесс всасывания, процесс сжатия и процесс выхлопа свободно-поршневого двигателя осуществляются посредством перемещения поршня только в одном направлении вследствие давления текущей среды, создаваемой горением и взрывом топлива в неразделенной камере сгорания, а перемещение поршня в другом направлении - действием линейного генератора в качестве электродвигателя. Отвод электроэнергии в линейном генераторе происходит при сгорании и взрыве в свободно-поршневом двигателе.

ЗАДАЧИ, РЕШАЕМЫЕ ПОСРЕДСТВОМ ИЗОБРЕТЕНИЯ

Линейная система выработки электроэнергии в соответствии с Патентным Документом 1 имеет конструкцию, в которой горение и взрыв в свободно-поршневом двигателе (гидродинамический цилиндр), содержащем цилиндр в неразделенной камере сгорания, и функции линейного генератора и электродвигателя объединяются, чтобы осуществить возвратно-поступательное движение поршня свободно-поршневого двигателя в осевом направлении, и катушка линейного генератора служит компонентой электродвигателя и генератора. В случае линейной системы выработки электроэнергии и при наличии контроллера для управления линейной системой выработки электроэнергии возникает проблема в том, что конструкция усложняется и стоимость оказывается высокой.

Кроме того, поскольку поршень перемещается в одном направлении вследствие горения и взрыва, а в другом направлении перемещается электродвигателем, то возникает проблема в том, что выработка электроэнергии будет недостаточной.

Кроме того, поскольку свободно-поршневой двигатель и линейный генератор соединяются последовательно, объем и длина увеличиваются и, таким образом, оказывается необходимым слишком большое рабочее пространство.

СРЕДСТВО РАЗРЕШЕНИЯ ЗАДАЧИ

Для разрешения вышеупомянутых проблем настоящее изобретение предоставляет линейный генератор, который обеспечивает выработку электроэнергии между поршнем и цилиндром, составляющими гидродинамический цилиндр.

В целом линейный генератор в соответствии с настоящим изобретением имеет конструкцию гидродинамического цилиндра, в котором давление текучей среды в левой гидродинамической камере в контакте с левой концевой стенкой цилиндра и давление текучей среды в правой гидродинамической камере в контакте с правой концевой стенкой цилиндра поочередно прикладываются к поршню в цилиндре, чтобы осуществить возвратно-поступательное движение поршня в осевом направлении. Линейный генератор содержит пояс постоянного магнита и пояс электроиндукционной катушки. Пояс постоянного магнита предоставлен между левой нажимной поверхностью в контакте с левой гидродинамической камерой поршня и правой нажимной поверхностью в контакте с правой гидродинамической камерой. Пояс электроиндукционной катушки, предоставленный над левой и правой гидродинамическими камерами, сформирован на цилиндрической стенке между левой и правой концевыми стенками цилиндра. Поршень, имеющий пояс постоянного магнита, совершает возвратно-поступательное движение в осевом направлении, посредством чего происходит выработка электроэнергии в поясе электроиндукционной катушки.

Левая и правая гидродинамические камеры составляют камеры сгорания, и поршень перемещается в осевом направлении под давлением текучей среды, произведенным горением и взрывом топлива в камере сгорания.

Альтернативно, текучая среда высокого давления подается поочередно в левую и правую гидродинамические камеры извне, и поршень перемещается в осевом направлении под давлением текучей среды высокого давления.

Поршень может быть составлен из цилиндрического постоянного магнита, и обе концевые открытые поверхности трубчатого отверстия цилиндрического поршня могут быть закрыты нажимными концевыми пластинами так, чтобы давление текучей среды могло быть принято нажимной концевой пластиной.

Цилиндрический поршень составлен из отдельного трубчатого тела, содержащего постоянный магнит, или составлен укладыванием множества колец или коротких трубчатых тел, каждое из которых содержит постоянный магнит.

ЭФФЕКТЫ ИЗОБРЕТЕНИЯ

Настоящее изобретение в качестве основной конструкции использует конструкцию гидродинамического цилиндра, в которой давления текучих сред в левой и правой гидродинамических камерах в обоих концах цилиндра прикладываются поочередно, чтобы осуществить возвратно-поступательное движение поршня и, в то же самое время, настоящее изобретение может реализовать выработку электроэнергии между поршнем и цилиндром, составляющими гидродинамический цилиндр, упрощение конструкции генератора, и снижение объема и веса, благодаря чему может быть надежно получена эффективная выработка электроэнергии.

Кроме того, поршень имеет цилиндрическую форму, и давление текучей среды принимается нажимной концевой пластиной, чтобы переместить поршень, благодаря чему может быть уменьшен вес поршня, и могут быть реализованы плавное возвратно-поступательное движение и эффективная выработка электроэнергии.

Кроме того, постоянный магнит поршня может быть эффективно защищен от динамического воздействия и высокой температуры посредством нажимной концевой пластины.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 изображает вид сечения, показывающий пример, в котором поршень (трубчатое тело постоянного магнита) линейного генератора в соответствии с настоящим изобретением состоит из отдельного трубчатого тела, содержащего постоянный магнит;

Фиг.2 - вид в сечении, показывающий пример, в котором поршень (трубчатое тело постоянного магнита) линейного генератора состоит из набора коротких трубчатых тел, содержащих постоянный магнит;

Фиг.3 - вид в сечении, показывающий пример, в котором поршень (трубчатое тело постоянного магнита) линейного генератора состоит из набора колец, содержащих постоянный магнит;

Фиг.4 - вид в сечении, показывающий пример, в котором поршень (трубчатое тело постоянного магнита) линейного генератора состоит из коротких колончатых тел, содержащих постоянный магнит;

Фиг.5 - вид в сечении, показывающий пример, в котором неподвижное трубчатое тело постоянного магнита и неподвижный цилиндрический хомут предоставлены в линейном генераторе вышеупомянутых примеров;

Фиг.6A - вид в сечении, показывающий первую операцию линейного генератора, которая позволяет поршню начать двигаться благодаря горению и взрыву топлива;

Фиг.6B - вид в сечении, показывающий вторую операцию линейного генератора, которая позволяет поршню начать двигаться благодаря горению и взрыву топлива;

Фиг.6С - вид в сечении, показывающий третью операцию линейного генератора, которая позволяет поршню начать двигаться благодаря горению и взрыву топлива;

Фиг.6D - вид в сечении, показывающий четвертую операцию линейного генератора, которая позволяет поршню начать двигаться благодаря горению и взрыву топлива;

Фиг.7A - вид в сечении, показывающий первую операцию линейного генератора, которая позволяет поршню начать двигаться благодаря текучей среде высокого давления, подаваемой извне; и

Фиг.7В - вид в сечении, показывающий вторую операцию линейного генератора, которая позволяет поршню начать двигаться благодаря текучей среде высокого давления, подаваемой извне.

ПРЕДПОЧТИТЕЛЬНЫЕ ВАРИАНТЫ РЕАЛИЗАЦИИ ИЗОБРЕТЕНИЯ

Ниже в связи с Фиг.1-7 подробно рассматриваются предпочтительные варианты реализации настоящего изобретения.

Линейный генератор в соответствии с настоящим изобретением имеет конструкцию гидродинамического цилиндра. В этой конструкции давление текучей среды в левой гидродинамической камере 4 в контакте с левой концевой стенкой 2 цилиндра 1 и давление текучей среды в правой гидродинамической камере 5 в контакте с правой концевой стенкой 3 цилиндра 1 поочередно прикладываются к поршню (свободный поршень) 6 в цилиндре 1, чтобы осуществить возвратно-поступательное движение поршня 6 в осевом направлении.

Цилиндр 1 состоит из полного цилиндрического и закрытого с обоих концов трубчатого тела, где левый и правый концы трубчатого тела закрыты концевыми стенками 2 и 3, соответственно. Цилиндр 1 содержит в себе поршень (свободный поршень) 6, перемещаемый в осевом направлении. Левая гидродинамическая камера 4 задана левой концевой цилиндрической стенкой цилиндра 1, поршнем 6 и левой концевой стенкой 2. Правая гидродинамическая камера 5 задана правой концевой цилиндрической стенкой цилиндра 1, поршнем 6 и правой концевой стенкой 3.

Линейный генератор в соответствии с настоящим изобретением использует конструкцию гидродинамического цилиндра и, вместе с тем, пояс 9 постоянного магнита предоставляется между левой нажимной поверхностью 7 поршня 6 в контакте с левой гидродинамической камерой 4, и правой нажимной поверхностью 8 в контакте с правой гидродинамической камерой 5, и пояс 11 электроиндукционной катушки, предоставленный над левой и правой гидродинамическими камерами 4 и 5, сформирован на цилиндрической стенке между левой и правой концевыми стенками 2 и 3 цилиндра 1. Поршень 6, имеющий пояс 9 постоянного магнита, совершает возвратно-поступательное движение в осевом направлении, благодаря чему индуцируется выработка электроэнергии в поясе 11 электроиндукционной катушки.

Левая и правая гидродинамические камеры 4 и 5 составляют камеру сгорания, и поршень 6 перемещается в осевом направлении давлением текучей среды, произведенным горением и взрывом топлива в камере сгорания.

Альтернативно, текучие среды 20 и 20" высокого давления поочередно подаются в левую и правую гидродинамические камеры 4 и 5 извне, и поршень 6 перемещается в осевом направлении посредством давления текучих сред 20 и 20" высокого давления.

Как показано на Фиг.1, 2 и 3, поршень 6 состоит из трубчатого тела 6" постоянного магнита. Обе концевые открытые поверхности трубчатого отверстия 13 трубчатого тела 6" постоянного магнита закрыты нажимными концевыми пластинами 14, и давление текучей среды принимается нажимными концевыми пластинами 14.

Как частный пример, в поршневой конструкции на Фиг.1 цилиндрический поршень 6 состоит из трубчатого тела 6" постоянного магнита, содержащего отдельное трубчатое тело 6a, трубчатое тело 6" постоянного магнита внешним образом вставлено в цилиндрический хомут 10, и обе концевые открытые поверхности закрыты нажимными концевыми пластинами 14.

В поршневой конструкции на Фиг.2 цилиндрический поршень 6 состоит из трубчатого тела 6" постоянного магнита, имеющего конструкцию, в которой множество коротких трубчатых тел 6c, каждое из которых содержит постоянный магнит, целиком и коаксиально пакетированы. Трубчатое тело 6" постоянного магнита смонтировано снаружи на цилиндрическом хомуте 10, и оба концевых отверстия закрыты нажимными концевыми пластинами 14.

В поршневой конструкции на Фиг.3 цилиндрический поршень 6 состоит из трубчатого тела 6" постоянного магнита, имеющего конструкцию, в которой множество колец 6b, каждое из которых содержит постоянный магнит, целиком и коаксиально пакетированы. Трубчатое тело 6" постоянного магнита смонтировано снаружи на цилиндрическом хомуте 10, и обе концевые открытые поверхности закрыты нажимными концевыми пластинами 14.

В поршневой конструкции на Фиг.4 поршень 6 состоит из колончатого тела 6" постоянного магнита, имеющего конструкцию, в которой множество коротких колончатых тел 6d, каждое имеет жесткую конструкцию и содержит постоянный магнит, целиком и коаксиально пакетированы, и нажимные концевые пластины 14 предоставлены на обеих концевых поверхностях, соответственно.

Когда кольца 6b, или короткие трубчатые тела 6c, пакетированы в поршне 6, длина поршня 6 (пояс 9 постоянного магнита) может быть увеличена или уменьшена посредством увеличения или уменьшения числа пакетированных колец 6b или коротких трубчатых тел 6c.

Предпочтительно, чтобы нажимная концевая пластина 14, рассмотренная в связи с Фиг.1-4, состояла из огнеупорной пластины, типа керамической пластины, волокнистой пластины, каменной пластины, бетонной пластины, углеродистой пластины и металлической пластины.

Трубчатое тело 6" постоянного магнита и колончатое тело 6" постоянного магнита имеют на внешних перифериях обоих их концов кольцевые уплотнения 15 для использования при герметичном уплотнении с внутренней периферией цилиндра 1. Альтернативно, кольцевые уплотнения 15 предоставляются на внешних перифериях нажимных концевых пластин 14, закрывая обе концевые открытые поверхности цилиндрического поршня 6, состоящего из трубчатого тела 6" постоянного магнита.

Трубчатое тело 6" постоянного магнита и колончатое тело 6" постоянного магнита имеют полярности в соответствии с известным принципом магнитной индукции, и они устроены так, чтобы магнитные линии постоянного магнита были эффективно приложены к электроиндукционной катушке в поясе 11 электроиндукционной катушки.

Например, внутренний периферийный участок трубчатого тела 6" постоянного магнита имеет северный полюс (или южный полюс), и внешний периферийный участок имеет южный полюс (или северный полюс).

Аналогично, как показано на Фиг.2 и 3, также когда короткие трубчатые тела 6c или кольца 6b пакетированы так, чтобы составить трубчатое тело 6" постоянного магнита, внутренние периферийные участки коротких трубчатых тел 6c и кольца 6b могут иметь северный полюс (или южный полюс), и внешние периферийные участки могут иметь южный полюс (или северный полюс).

Как частный пример, на Фиг.3, кольцо 6b, в котором внешний периферийный участок имеет северный полюс и внутренний периферийный участок имеет южный полюс, и кольцо 6b, в котором внешний периферийный участок имеет южный полюс, и внутренний периферийный участок имеет северный полюс, поочередно пакетированы в осевом направлении так, чтобы было составлено трубчатое тело 6" постоянного магнита. Также, когда множество коротких трубчатых тел 6c на Фиг.2 пакетировано так, чтобы составить трубчатое тело 6" постоянного магнита, короткие трубчатые тела 6c могут быть пакетированы так, чтобы северные и южные полюса были установлены поочередно.

На Фиг.4 короткие колончатые тела 6d, в которых центральное ядро имеет южный полюс и внешний периферийный участок имеет северный полюс, и короткие колончатые тела 6d, в которых центральное ядро имеет северный полюс, и внешний периферийный участок имеет южный полюс, пакетированы в осевом направлении.

Электроиндукционная катушка, составляющая пояс 11 электроиндукционной катушки, может быть составлена из множества отдельных групп электроиндукционной катушки в соответствии с полюсным расположением в вышеупомянутых примерах.

Само собой разумеется, что все короткие трубчатые тела 6c, кольца 6b, или короткие колончатые тела 6d, составляющие трубчатое тело 6" постоянного магнита и колончатое тело 6" постоянного магнита, могут быть пакетированы так, чтобы внешний периферийный участок и внутренний периферийный участок имели одинаковые полюса, соответственно.

В варианте реализации на Фиг.5 поршень 6 состоит из трубчатого тела 6" постоянного магнита (или колончатого тела 6" постоянного магнита) и, в то же самое время, цилиндр 1 предоставлен с неподвижным трубчатым телом 1" постоянного магнита, кольцеобразно окружающим внешнюю периферию пояса 11 электроиндукционной катушки так, чтобы электроиндукционная катушка могла производить электроэнергию более эффективно.

В варианте реализации на Фиг.5, кроме того, предоставлен неподвижный цилиндрический хомут 16, кольцеобразно окружающий внешнюю периферию неподвижного трубчатого тела 1" постоянного магнита.

Неподвижное трубчатое тело постоянного магнита 1", неподвижный цилиндрический хомут 16, окружающий неподвижное трубчатое тело 1" постоянного магнита, трубчатое тело 6" постоянного магнита или колончатое тело 6" постоянного магнита, составляющее поршень 6, и цилиндрический хомут 10, на котором снаружи смонтировано трубчатое тело 6" постоянного магнита, все вместе увеличивают эффективность выработки электроэнергии.

На Фиг.5 в качестве примера показано, что большое количество колец la постоянного магнита пакетированы, чтобы составить неподвижное трубчатое тело 1" постоянного магнита, электроиндукционная катушка в поясе 11 электроиндукционной катушки кольцеобразно окружена неподвижным трубчатым телом 1" постоянного магнита, и трубчатое тело 6" постоянного магнита, составляющее поршень 6, кроме того, кольцеобразно окружено через пояс 11 электроиндукционной катушки.

Иначе говоря, трубчатые тела 6" и 1" постоянного магнита установлены на внутренней периферии и внешней периферии электроиндукционной катушки в поясе 11 электроиндукционной катушки, и электроиндукционная катушка зажата между трубчатыми телами 6" и 1" постоянного магнита.

Кольца la постоянного магнита, составляющие неподвижное трубчатое тело 1" постоянного магнита,и кольца 6b постоянного магнита, составляющие поршень 6, соответственно пакетированы так, чтобы смежные кольца la и 6b имели противоположные полярности друг относительно друга, как показано на Фиг.3 и 5, например.

Также, когда трубчатое тело 6" (поршень 6) постоянного магнита составлено из коротких трубчатых тел 6c, показанных на Фиг.2, множество коротких трубчатых тел постоянного магнита могут быть пакетированы, чтобы обеспечить неподвижное трубчатое тело 1" постоянного магнита, трубчатое тело постоянного магнита 6", составляющее поршень 6,может быть кольцеобразно окружено неподвижным трубчатым телом 1" постоянного магнита, и короткие трубчатые тела трубчатых тел 1" и 6" могут быть установлены так, чтобы смежные короткие трубчатые тела имели противоположные полярности друг относительно друга.

В примерах на Фиг.1-4 может быть предоставлено неподвижное трубчатое тело 1" постоянного магнита, окружающее пояс 11 электроиндукционной катушки. Когда неподвижное трубчатое тело 1" постоянного магнита предоставлено, толщина трубчатого тела 6" постоянного магнита, составляющего поршень 6, может быть уменьшена, и диаметр колончатого тела 6" постоянного магнита поршня 6 может также быть уменьшен, благодаря чему поршень 6 может быть дополнительно уменьшен в весе.

Как описано выше, когда левая и правая гидродинамические камеры 4 и 5 составляют камеру сгорания, например, свечи 19 зажигания предоставляются на левой и правой концевых стенках 2 и 3, клапаны 17 инжекции топлива предоставляются на левой и правой концевых стенках 2 и 3, или на левой и правой концевых цилиндрических стенках цилиндра 1, и выхлопной клапан 18 предоставляется на левой и правой концевых стенках 2 и 3, левой и правой концевых цилиндрических стенках, или промежуточном участке цилиндрической стенки цилиндра 1.

Ниже, в связи с Фиг.6A-6D, рассматривается операция, когда левая и правая гидродинамические камеры 4 и 5 составляют левую и правую камеры сгорания.

Как показано на Фиг.6A и 6B, сжатое топливо в левой камере 4 сгорания, подаваемое свечой 19 зажигания левой стороны через клапан 17 инжекции топлива, сгорает и взрывается, благодаря чему давление текучей среды прикладывается к левой нажимной поверхности 7 нажимной концевой пластины 14, и поршень 6 (трубчатое тело 6" постоянного магнита или колончатое тело 6" постоянного магнита) перемещается вправо по осевой линии.

Как показано на Фиг.6C и 6D, поршень 6 перемещается вправо, как описано выше, благодаря чему топливо (смесь с газом), инжектированное в правую камеру 5 сгорания через клапан 17 инжекции топлива правой стороны, сжимается, затем воспламеняется правой свечой 19 зажигания и, таким образом, сгорает и взрывается в правой камере 5 сгорания. В результате давление текучей среды прикладывается к правой нажимной поверхности 8 нажимной концевой пластины 14, и поршень 6 (трубчатое тело 6" постоянного магнита или колончатое тело 6" постоянного магнита) перемещается влево по осевой линии.

Текучая среда (горючий газ) 20, произведенная гоорением и взрывом топлива в левой и правой гидродинамических камерах 4 и 5, выпускается через выхлопной клапан 18, сопровождаясь возвратно-поступательным движением поршня 6.

Вышеупомянутая операция повторяется, благодаря чему трубчатое тело 6" постоянного магнита, или колончатое тело 6" постоянного магнита (пояс 9 постоянного магнита), составляющее поршень 6, многократно совершает возвратно-поступательное движение, и обеспечивается выработка электроэнергии в поясе 11 электроиндукционной катушки.

Далее, в связи с Фиг.7A и 7B, рассматривается вариант реализации, в котором текучая среда высокого давления подается в левую и правую гидродинамические камеры 4 и 5 извне, чтобы осуществить возвратно-поступательное движение поршня 6. В качестве текучей среды 20" высокого давления могут быть использованы различные газы в дополнение к воздуху и пару.

Например, клапаны 21 подачи топлива и выпускные клапаны 22 предоставляются на левой и правой концевых стенках 2 и 3. Как показано на Фиг.7A, текучая среда 20" высокого давления подается в левую гидродинамическую камеру 4 через левый клапан 21 подачи текучей среды, благодаря чему давление текучей среды 20" высокого давления прикладывается к левой нажимной поверхности 7 нажимной концевой пластины 14, и поршень 6 (трубчатое тело 6" постоянного магнита или колончатое тело 6") перемещается вправо по осевой линии.

Затем, как показано на Фиг.7B, когда поршень 6 достигает конечного участка правого движения, текучая среда 20" высокого давления подается в правую камеру 5 сгорания через правый клапан 21 подачи текучей среды, благодаря чему давление текучей среды 20" высокого давления прикладывается к правой нажимной поверхности 8 нажимной концевой пластины 14, и поршень 6 (трубчатое тело 6" постоянного магнита или колончатое тело 6" постоянного магнита) перемещается влево по осевой линии.

Вышеупомянутая операция повторяется, благодаря чему трубчатое тело 6" постоянного магнита или колончатое тело 6" постоянного магнита (пояс постоянного магнита 9), составляющие поршень 6, многократно совершают возвратно-поступательное движение, чтобы обеспечить выработку электроэнергии в поясе 11 электроиндукционной катушки.

ПЕРЕЧЕНЬ ССЫЛОЧНЫХ ПОЗИЦИЙ

1 - Цилиндр

1" - Неподвижное трубчатое тело постоянного магнита

la - Кольцо постоянного магнита

2 - Левая концевая стенка

3 - Правая концевая стенка

4 - Левая гидродинамическая камера

5 - Правая гидродинамическая камера

6 - Поршень

6" - Трубчатое тело постоянного магнита

6" - Колончатое тело постоянного магнита

6a - Отдельное трубчатое тело

6b - Кольцо

6c - Короткое трубчатое тело

6d - Короткое колончатое тело

7 - Левая нажимная поверхность

8 - Правая нажимная поверхность

9 - Пояс постоянного магнита

10 - Цилиндрический хомут

11 - Пояс электроиндукционной катушки

13 - Трубчатое отверстие

14 - Нажимная концевая пластина

15 - Кольцевое уплотнение

16 - Неподвижный цилиндрический хомут

17 - Клапан инжекции топлива

18 - Выхлопной клапан

19 - Свеча зажигания

20 - Текучая среда (горючий газ)

20" - Текучая среда высокого давления

21 - Клапан подачи текучей среды

22 - Выхлопной клапан

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Линейный генератор, имеющий конструкцию гидродинамического цилиндра, в котором давление текучей среды в левой гидродинамической камере в контакте с левой концевой стенкой цилиндра и давление текучей среды в правой гидродинамической камере в контакте с правой концевой стенкой цилиндра поочередно прикладываются к поршню в цилиндре, чтобы осуществить возвратно-поступательное движение поршня в осевом направлении, причем линейный генератор содержит:

постоянный магнит, предоставленный между левой нажимной поверхностью в контакте с левой гидродинамической камерой поршня и правой нажимной поверхностью в контакте с правой гидродинамической камерой; и

электроиндукционную катушку, предоставленную над левой и правой гидродинамическими камерами и сформированную на цилиндрической стенке между левой и правой концевыми стенками цилиндра,

причем поршень, имеющий постоянный магнит, совершает возвратно-поступательное движение в осевом направлении, чтобы обеспечить выработку электроэнергии в электроиндукционной катушке,

при этом линейный генератор дополнительно содержит неподвижный трубчатый корпус постоянного магнита, кольцеобразно окружающий внешнюю периферию электроиндукционной катушки, и неподвижный цилиндрический хомут, кольцеобразно окружающий внешнюю периферию неподвижного трубчатого тела постоянного магнита.

2. Линейный генератор по п.1, в котором левая и правая гидродинамические камеры составляют камеры сгорания, и поршень перемещается в осевом направлении посредством давления текучей среды, создаваемого горением и взрывом топлива в камере сгорания.

3. Линейный генератор по п.1, в котором текучая среда высокого давления подается поочередно в левую и правую гидродинамические камеры извне, и поршень перемещается в осевом направлении давлением текучей среды высокого давления.

4. Линейный генератор по пп.1, 2 или 3, в котором поршень имеет цилиндрическую форму, и обе концевые открытые поверхности трубчатого отверстия цилиндрического поршня закрыты нажимными концевыми пластинами, принимающими давление текучей среды.

5. Линейный генератор по п.4, в котором цилиндрический поршень составлен укладыванием множества колец или коротких трубчатых тел, каждый из которых сделан из постоянного магнита.

Полезная модель относится к электротехнике и может быть использована в преобразовании энергии возвратно поступательного перемещения деталей и механизмов в энергию электрического тока. Линейный электрический генератор содержит цилиндрический корпус, размещенный внутри него каркас с кольцевыми индуктивными катушками, генерирующий магнитный сердечник с размещенными внутри тонкостенного цилиндра из диамагнетика дисковых постоянных магнитов с осевой намагниченностью и встречным расположением одноименных магнитных полисов и зазором между ними. Генерирующий магнитный сердечник размещенный внутри каркаса с кольцевыми индуктивными катушками, с возможностью возвратно-поступательного перемещения вдоль оси генератора.

Полезная модель относится к электротехнике и может быть использована в качестве преобразователей возвратно-поступательного движения деталей механизмов в электрическую энергию.

Известно устройство, содержащее корпус из магнитомягкого железа, каркас из немагнитного материала с расположенными на нем в ряд кольцевыми индуктивными катушками, генерирующий магнитный сердечник с кольцевыми постоянными магнитами (см. Патент РФ на полезную модель 83373, опубликованный 27.05.2009 Бюл. 15), прототип.

Недостатком прототипа является низкий КПД, связанный с потерями энергии магнитного потока кольцевых постоянных магнитов, замыкающегося через отверстие кольцевых магнитов.

Технический результат заключается в повышении КПД преобразования за счет использования дисковых постоянных магнитов, что при равенстве магнитных потоков постоянных магнитов в предлагаемой полезной модели и прототипе приведет к уменьшению габаритов и веса генератора.

Технический результат достигается тем, что линейный электрический генератор содержит цилиндрический корпус из магнитомягкого железа, размещенный внутри него каркас из немагнитного материала, с расположенными на нем в ряд кольцевыми индуктивными катушками, разделенными щечками, генерирующий магнитный сердечник, как минимум, с двумя постоянными магнитами с осевой намагниченностью. Особенностью является то, что постоянные магниты, имеющие дисковую форму, размещены внутри тонкостенного цилиндра из диамагнетика с зазором относительно друг друга, и встречным расположение одноименных магнитных потоков, скреплены дисковыми концентраторами магнитного поля с осевыми наконечниками, спресованными или посаженными на клей по окружности стенок тонкостенного цилиндра и имеют возможность свободного возвратно-поступательного перемещения внутри каркаса с кольцевыми индуктивными катушками. Относительные размеры упомянутых составных элементов находятся в следующих пределах: высота дисковых постоянных магнитов составляет (0,3÷0,4) от их диаметра; зазор между дисковыми постоянными магнитами определяется толщиной немагнитных прокладок, и составляет (0,5÷1) от высоты дисковых постоянных магнитов; внутренний диаметр цилиндрического корпуса больше диаметра дисковых постоянных магнитов не более, чем на их высоту; длина каждой из кольцевых индуктивных катушек равна сумме высоты дисковых постоянных магнитов, и величины зазора между ними; длина хода генерирующего магнитного сердечника не более величины зазора между дисковыми постоянными магнитами; зазор между тонкостенным цилиндром с дисковыми постоянными магнитами и внутренней поверхностью каркаса с кольцевыми индуктивными катушками должен быть минимальным и обеспечивающим свободное возвратно-поступательное перемещение генерирующего магнитного сердечника.

Сущность полезной моделью поясняется графическими материалами на которых изображено: на фиг.1 - конструкция линейного электрического генератора с видом с торца сечения; на фиг.2 - схематически показаны визуализированные магнитные силовые линии, замыкающиеся через магнитопровода и кольцевые индуктивные катушки.

Линейный электрический генератор содержит цилиндрический корпус 1 из магнитомягкого железа, размещенный внутри него каркас 2 из немагнитного материала с расположенными на нем в ряд кольцевыми индуктивными катушками 3, разделенными щечками 4, генерирующий магнитный сердечник, как минимум, с двумя постоянными магнитами 5 с осевой намагниченностью. Постоянные магниты 5, имеющие дисковую форму, размещены внутри тонкостенного цилиндра 6 из диамагнетика с зазором относительно друг друга и встречным расположением одноименных магнитных полюсов, скрепленных дисковыми концентраторами 7 магнитного поля с осевыми наконечниками 8, спрессованными или посаженными на клей по окружности стенок тонкостенного цилиндра 6 и имеют возможность свободного возвратно-поступательного перемещения внутри каркаса 2 с кольцевыми индуктивными катушками 3. Относительные размеры упомянутых составных элементов находятся в следующих пределах: высота h дисковых постоянных магнитов 5 составляет (0,3÷0,4) от их диаметров D м, h=(0,3÷0,4) D м; зазор между дисковыми постоянными магнитами 5 определяется толщиной немагнитных прокладок 9, и составляет (0,5÷1) от высоты h дисковых постоянных магнитов 5, =(0,5÷1)h; внутренний диаметр D k цилиндрического корпуса 1 больше диаметра D м дисковых постоянных магнитов 5 не более, чем на половину их высоту h, (D м +h)D k ; длина l k каждой их кольцевых индуктивных катушек 3 равна сумме высоты h дисковых постоянных магнитов 5, и величины зазора между ними l k =h+; длина l х хода генерирующего магнитного сердечника не более величины зазора между дисковыми постоянными магнитами 5, l x ; зазор между тонкостенным цилиндром 6 с дисковыми постоянными магнитами 5 и внутренней поверхностью каркаса 2 с кольцевыми индуктивными катушками 3 должен быть минимальным и обеспечивающим свободное возвратно-поступательное перемещение генерирующего магнитного сердечника.

Торцевые стенки 10 цилиндрического корпуса 1 выполнены из диамагнетика, а на их внутренних сторонах расположены демпферы 11. Число дисковых постоянных магнитов 5 определяет мощность генератора. На фиг.2 схематически показаны визуализированные силовые магнитные линии 12 дисковых постоянных магнитов 5, замыкающихся по магнитопроводу и пересекающих витки кольцевых индуктивных катушек 3. При возвратно-поступательном перемещении генерирующего магнитного сердечника в кольцевых индуктивных катушках 3 наводится ЭДС.

Кольцевые индуктивные катушки 3 могут быть электрически соединены параллельно-встречно или последовательно-встречно. При отсутствии отверстий в дисковых постоянных магнитах 5 в преобразовании используется энергия магнитного поля полностью, что приводит к увеличению КПД преобразования.

1. Линейный электрический генератор, содержащий цилиндрический корпус из магнитомягкого железа, размещенный внутри него каркас из немагнитного материала с расположенными на нем в ряд кольцевыми индуктивными катушками, разделенными щечками, генерирующий магнитный сердечник как минимум с двумя постоянными магнитами с осевой намагниченностью, отличающийся тем, что постоянные магниты, имеющие дисковую форму, размещены внутри тонкостенного цилиндра из диамогнетика с зазором относительно друг друга и встречным расположением одноименных магнитных полюсов, скреплены дисковыми концентраторами магнитного поля с осевыми наконечниками, спресованными или посаженными на клей по окружности стенок тонкостенного цилиндра и имеют возможность свободного возвратно-поступательного перемещения внутри каркаса с кольцевыми индуктивными катушками.

2. Генератор по п.1, отличающийся тем, что относительные размеры упомянутых составных элементов находятся в следующих пределах: высота дисковых постоянных магнитов составляет (0,3÷0,4) от их диаметра; зазор между дисковыми постоянными магнитами определяется толщиной немагнитных прокладок и составляет (0,5÷1) от высоты дисковых постоянных магнитов; внутренний диаметр цилиндрического корпуса больше диаметра дисковых постоянных магнитов не более чем на их высоту; длина каждой из кольцевых индуктивных катушек равна сумме высоты дисковых постоянных магнитов и величины зазора между ними; длина хода генерирующего магнитного сердечника не более величины зазора между дисковыми постоянными магнитами; зазор между тонкостенным цилиндром с дисковыми постоянными магнитами и внутренней поверхностью каркаса с кольцевыми индуктивными катушками должен быть минимальным и обеспечивающим свободное возвратно-поступательное перемещение генерирующего магнитного сердечника.

Похожие патенты:

Полезная модель электрического генератора переменного тока относится к электротехнике, а именно к системам двигатель-генератор, и может быть использована при проектировании и производстве источников переменного электрического тока, в том числе на транспорте.

Традиционные двигатели внутреннего сгорания отличаются тем, что в качестве начального звена выступают поршни, которые выполняют слаженные возвратно-поступательные движения. После изобретения кривошипно-шатунных агрегатов специалисты смогли достичь вращательного момента. В некоторых современных моделях оба звена совершают один вид движений. Именно этот вариант считается наиболее практичным.

Например, в линейном генераторе нет необходимости воздействовать на возвратно-поступательные действия, извлекая при этом прямолинейную составляющую. Применение современных технологий позволило адаптировать для пользователя выходное напряжение агрегата, за счет этого часть замкнутого электрического контура совершает не вращательные движения в магнитном поле, а только поступательные.

Описание

Линейный генератор часто называют изделием на постоянных магнитах. Агрегат предназначен для эффективного преобразования механической энергии дизельного двигателя в выходной электрический ток. За выполнение этой задачи отвечают постоянные магниты. Качественный генератор может быть выполнен на основе разных геометрических схем. Например, стартер и ротор могут изготавливаться в виде соосных дисков, которые вращаются относительно друг друга.

Эксперты называют такие линейные генераторы дисковыми или просто аксиальными. Используемая на производстве схема позволяет создавать высококачественные агрегаты компактных размеров с наиболее плотной компоновкой. Такое изделие можно смело устанавливать в ограниченном пространстве. Самыми востребованными считаются цилиндрические и радиальные генераторы. В таких изделиях стартер и ротор выполнены в виде соосных цилиндров, вложенных друг в друга.

Характеристика

Линейный генератор относится к сфере энергомашиностроения, так как умелое его использование позволяет повысить топливную экономичность и минимизировать выбросы токсичных газов в распространенных свободнопоршневых двигателях внутреннего сгорания. В автономном изделии, в котором электричество преобразуется при помощи сцепления между постоянным магнитом и неподвижной обмоткой, спаренные с поршнями цилиндры имеют характерную коническую форкамеру. Генератор функционирует с измененными ходами сжатия. Обмотка и поисковой магнит устроен так, что итоговое соотношение между количествами механической энергии, применяемой для производства электричества, равно имеющемуся между степенями сжатия.

Конструкция

Поисковой магнит в классических генераторах отличается принципом строения, так как производители полностью исключили трущиеся детали, такие как токоснимающие щетки и коллекторы. Отсутствие таких механизмов повышает степень надежности работы дизельной электростанции. Конечному потребителю не придется тратить большие суммы на техническое обслуживание оборудования. Устройство линейного генератора на дизельном топливе с постоянными магнитами позволяет экспертам надежно обеспечивать ценной электроэнергией различные лаборатории, жилые дома, а также небольшие производственные объекты.

Высокая степень надежности, доступность и легкий запуск делают такие установки просто незаменимыми в том случае, когда нужно обеспечить наличие резервного источника питания. К негативным сторонам линейных генераторов можно отнести то, что самая надежная конструкция не позволяет получить высокого напряжения выходного тока. Если же нужно обеспечить электроэнергией мощное оборудование, тогда пользователю придется задействовать многополосные модели, стоимость которых значительно выше базовых установок.

Линейные цепи

Это отдельная категория деталей, которая пользуется огромным спросом среди профессионалов. В соответствии с законом Ома ток в линейных электрических цепях пропорционален приложенному напряжению. Уровень сопротивления постоянен и абсолютно не зависит от приложенного к нему напряжения. Если ВАХ электрического элемента является прямой линией, то такой элемент называется линейным. Стоит отметить, что в реальных условиях сложно добиться высоких показателей, так как пользователю нужно создать оптимальные условия.

Для классических электрических элементов линейность носит условный характер. Например, сопротивление резистора зависит от температуры, влажности и других параметров. В жаркую погоду показатели существенно возрастают, из-за чего механизм теряет свою линейность.

Преимущества

Универсальный линейный генератор на постоянных магнитах выгодно отличается от всех современных аналогов многочисленными положительными характеристиками:

  1. Небольшой вес и компактность. Такой эффект достигается за счет отсутствия кривошипно-шатунного механизма.
  2. Доступная цена.
  3. Качественная наработка на отказ из-за отсутствия системы сжигания.
  4. Технологичность. Для производства долговечных деталей используются исключительно нетрудоемкие операции.
  5. Регулировка объема камеры сгорания топлива без остановки двигателя.
  6. Базовый ток нагрузки генератора не влияет на магнитное поле, что не влечет за собой снижение характеристик оборудования.
  7. Отсутствует система зажигания.

Недостатки

Несмотря на многочисленные положительные характеристики, многофункциональный генератор с качественными втулками рабочего цилиндра имеет некоторые отрицательные характеристики. Негативные отзывы владельцев связаны со сложностью получения выходного напряжения в виде синусоида. Но даже этот недостаток можно легко устранить, если задействовать универсальную электронную и преобразовательную технику. Новичкам нужно быть готовыми к тому, что агрегат оснащен несколькими цилиндрами внутреннего сгорания. Классическая регулировка объема топливной камеры осуществляется по тому же принципу, что и в тестовой заготовке.

Дизельные установки

Каждый мужчина может сделать своими руками линейный генератор, который будет обладать оптимальными эксплуатационными характеристиками. Главное - придерживаться основных рекомендаций и заранее подготовить все необходимые инструменты. Дизельный линейный генератор пригодится в том случае, если пользователю приходится самостоятельно вносить изменения в существующую электрическую сеть. Агрегат поможет существенно упростить осуществление профессиональных и бытовых задач. Любое изделие нуждается в периодическом техническом обслуживании. С такими манипуляциями справится любой мастер, если будет знать принцип работы механизма.

Ограничения

Все большую популярность приобретает доступный и надежный линейный генератор. В качестве источника энергии этот агрегат можно использовать как в бытовой, так и промышленной сфере. Но каждый пользователь должен помнить о некоторых ограничениях. В процессе эксплуатации стираются кулачки приводов клапанов, в результате чего механизм не открывается, из-за чего мощность падает до критических отметок.

Из-за частой эксплуатации быстро прогорают края горячего клапана. В устройстве присутствуют вкладыши - подшипники скольжения, которые расположены на шейке коленвала. Со временем эти изделия тоже стираются. В результате образуется свободное пространство, через которое начинает проходить заправленное масло.

Топливный насос

Привод этого агрегата представлен в виде кулачковой поверхности, которая прочно зажата между роликом поршня и самого корпуса. Механизм совершает возвратно-поступательные движения вместе с шатуном двигателя внутреннего сгорания. Если мастер планирует изменить количество выталкиваемого за один такт топлива, то он обязательно осуществляет аккуратный поворот кулачковой поверхности по отношению к продольной оси. В этой ситуации ролики поршня насоса и корпуса будут сдвигаться либо раздвигаться (все зависит от направления вращения). Итоговые значения напряжения и электроэнергии, вырабатываемые во время различных циклов, нельзя отнести к категории автоматически пропорциональных изменений механической энергии.

Такой подход предусматривает применение крупногабаритных аккумуляторных батарей, которые чаще всего устанавливают между частью внутреннего сгорания и электродвигателями. Использование линейного генератора позволяет сохранить благоприятную экологическую обстановку окружающей среды. Экспертам удалось минимизировать образование токсичных составов при работе агрегата, что высоко ценится в современном обществе.

Всю жизнь он своими яркими статьями боролся за укрепление русского государства, отважно разоблачая продажных чиновников, либеральных демократов и революционеров, предупреждая о нависшей над страной угрозе. Захватившие в России власть большевики ему этого не простили. Меньшикова расстреляли в 1918 году с крайней жестокостью на глазах у его жены и шестерых детей.

Михаил Осипович родился 7 октября 1859 г. в Новоржеве Псковской губернии близ озера Валдай, в семье коллежского регистратора. Окончил уездное училище, после чего поступил в Техническое училище Морского ведомства в Кронштадте. Потом участвовал в нескольких дальних морских походах, писательским плодом которых явилась вышедшая в 1884 году первая книга очерков – «По портам Европы». Как морской офицер, Меньшиков высказал идею соединения кораблей и аэропланов, предсказав тем самым появление авианосцев.

Чувствуя призвание к литературному труду и публицистике, в 1892 году Меньшиков вышел в отставку в чине штабс-капитана. Устроился корреспондентом в газету «Неделя», где вскоре обратил на себя внимание своими талантливыми статьями. Затем стал ведущим публицистом газеты консервативного толка «Новое время», где проработал вплоть до революции.

В этой газете он вел свою знаменитую рубрику «Письма к ближним», которая привлекала внимание всего образованного общества России. Некоторые называли Меньшикова «реакционером и черносотенцем» (а кто-то называет до сих пор). Однако все это – злостная клевета.

В 1911 году в статье «Коленопреклоненная Россия» Меньшиков, разоблачая происки западной закулисы против России, предупреждал:

«Если в Америке собирается огромный фонд с целью наводнения России душегубами и террористами, то нашему правительству об этом стоит подумать. Неужели и нынче государственная наша стража ничего вовремя не заметит (как в 1905 году) и не предупредит беды?».

Никаких мер в этой связи власти тогда не приняли. А если бы приняли? Вряд ли тогда смог бы приехать в Россию в 1917 году с деньгами американского банкира Джекоба Шифа Троцкий-Бронштейн, главный организатор Октябрьского переворота!

Идеолог национальной России

Меньшиков являлся одним из ведущих публицистов консервативного направления, выступая идеологом русского национализма. Он стал инициатором создания Всероссийского Национального Союза (ВНС), для которого разработал программу и устав. В эту организацию, которая имела свою фракцию в Госдуме, вошли умеренно-правые элементы образованного русского общества: профессора, военные в отставке, чиновники, публицисты, священнослужители, известные учёные. Большинство из них были искренними патриотами, что потом доказали многие из них не только своей борьбой против большевиков, но и мученической смертью...

Сам Меньшиков ясно предвидел национальную катастрофу 1917 года и, как истинный публицист, бил в набат, предупреждал, стремился предотвратить её. «Православие, – писал он, ­– нас освободило от древней дикости, самодержавие – от анархии, но возвращение на наших глазах к дикости и анархии доказывает, что необходим новый принцип, спасающий прежние. Это – народность... Только национализм в состоянии вернуть нам потерянное благочестие и могущество».

В статье «Кончина века», написанной в декабре 1900 года, Меньшиков призывал русских людей к сохранению роли державообразующего народа:

«Мы, русские, долго спали, убаюканные своим могуществом и славой, – но вот ударил один гром небесный за другим, и мы проснулись и увидели себя в осаде – и извне, и изнутри… Мы не хотим чужого, но наша – Русская – земля должна быть нашей».

Возможность избежать революции Меньшиков видел в усилении государственной власти, в последовательной и твёрдой национальной политике. Михаил Осипович был убеждён в том, что народ в совете с монархом должен управлять чиновниками, а не они им. Со страстью публициста он показывал смертельную опасность бюрократизма для России: «Наша бюрократия... свела историческую силу нации на нет».

Необходимость коренных перемен

Близкие отношения Меньшиков поддерживал с великими русскими писателями того времени. Горький признавался в одном из писем, что любит Меньшикова, потому что он его «враг по сердцу», а враги «лучше говорят правду». Со своей стороны Меньшиков называл «Песнь о соколе» Горького «злой моралью», потому что, по его словам спасает мир не «безумство храбрых», несущих восстание, а «мудрость кротких», вроде чеховской Липы («В овраге»).

Известно 48 писем к нему Чехова, который относился к нему с неизменным уважением. Меньшиков бывал в Ясной у Толстого, но при этом критиковал его в статье «Толстой и власть», где писал, что он опаснее для России, чем все революционеры вместе взятые. Толстой отвечал ему, что во время прочтения этой статьи он испытал «одно из самых желательных и дорогих мне чувств – не просто доброжелательства, а прямо любви к вам...».

Меньшиков был убеждён, что России нужны коренные перемены во всех без исключения областях жизни, только в этом было спасение страны, но иллюзий он не испытывал. «Людей нет – вот на чём Россия гибнет!» – восклицал в отчаянии Михаил Осипович.

До конца своих дней давал беспощадные оценки самодовольному чиновничеству и либеральной интеллигенции: «В сущности, всё красивое своё и великое вы давно пропили (внизу) и прожрали (наверху). Размотали церковь, аристократию, интеллигенцию».

Меньшиков считал, что каждая нация должна настойчиво бороться за свою национальную идентичность. «Когда речь зайдет, – писал он, – о нарушении прав еврея, финна, поляка, армянина, подымается негодующий вопль: все кричат об уважении к такой святыне, как национальность. Но лишь только русские обмолвятся о своей народности, о своих национальных ценностях: подымаются возмущенные крики - человеконенавистничество! Нетерпимость! Черносотенное насилие! Грубый произвол!».

Выдающийся русский философ Игорь Шафаревич писал: «Михаил Осипович Меньшиков – один из небольшого числа проницательных людей, живших в тот период русской истории, который иным казался (и сейчас еще кажется) безоблачным. Но чуткие люди уже тогда, на рубеже XIX и XX веков видели главный корень надвигающихся бед, обрушившихся потом на Россию и переживаемых нами до сих пор (да и не видно, когда еще придет им конец). Этот основной порок общества, несущий в себе опасность будущих глубоких потрясений, Меньшиков усматривал в ослаблении национального сознания русского народа...».

Портрет современного либерала

Еще много лет назад Меньшиков энергично разоблачал тех в России, кто, как и сегодня, поносил ее, уповая на «демократический и цивилизованный» Запад. «Мы, – писал Меньшиков, – глаз не сводим с Запада, мы им заворожены, нам хочется жить именно так и ничуть не хуже, чем живут "порядочные" люди в Европе. Под страхом самого искреннего, острого страдания, под гнетом чувствуемой неотложности нам нужно обставить себя той же роскошью, какая доступна западному обществу. Мы должны носить то же платье, сидеть на той же мебели, есть те же блюда, пить те же вина, видеть те же зрелища, что видят европейцы. Чтобы удовлетворить свои возросшие потребности, образованный слой предъявляет к русскому народу все большие требования.

Интеллигенция и дворянство не хотят понять, что высокий уровень потребления на Западе связан с эксплуатацией им значительной части остального мира. Как бы русские люди ни работали, они не смогут достичь уровня дохода, который на Западе получают путем перекачки в свою пользу неоплаченных ресурсов и труда других стран…

Образованный слой требует от народа крайнего напряжения, чтобы обеспечить себе европейский уровень потребления, и, когда это не получается, возмущается косностью и отсталостью русского народа».

Не нарисовал ли Меньшиков более ста лет назад со своей невероятной прозорливостью портрет нынешней русофобствующей либеральной «элиты»?

Отвага для честного труда

Ну а разве не к нам сегодня обращены эти слова выдающегося публициста? «Чувство победы и одоления, – писал Меньшиков, – чувство господства на своей земле годилось вовсе не для кровавых только битв. Отвага нужна для всякого честного труда. Все самое дорогое, что есть в борьбе с природой, все блистательное в науке, искусствах, мудрости и вере народной – все движется именно героизмом сердца.

Всякий прогресс, всякое открытие сродни откровению, и всякое совершенство есть победа. Только народ, привыкший к битвам, насыщенный инстинктом торжества над препятствиями, способен на что-нибудь великое. Если нет в народе чувства господства – нет и гения. Падает благородная гордость – и человек становится из повелителя рабом.

Мы в плену у рабских, недостойных, морально ничтожных влияний, и именно отсюда – наша нищета и непостижимая у богатырского народа слабость».

Разве не из-за этой слабости рухнула Россия в 1917 году? Разве не потому развалился в 1991-м могучий Советский Союз? Не та ли опасность грозит нам и сегодня, если мы уступим глобальному натиску на Россию со стороны Запада?

Месть революционеров

Те, кто подрывал основы Российской империи, а потом в феврале 1917 года захватили в ней власть, не забыли и не простили Меньшикову его позиции стойкого государственника и борца за единение русского народа. Публицист был отстранён от работы в «Новом времени». Лишившись дома и сбережений, конфискованных вскоре уже большевиками, зиму 1917–1918 гг. Меньшиков провел на Валдае, где у него была дача.

В те горькие дни он в своем дневнике писал:«27 февр.12.III.1918. Год русской великой революции. Мы еще живы, благодарение Создателю. Но мы ограблены, разорены, лишены работы, изгнаны из своего города и дома, обречены на голодную смерть. А десятки тысяч людей замучены и убиты. А вся Россия сброшена в пропасть еще небывалого в истории позора и бедствия. Что дальше будет и подумать страшно,- т. е. было бы страшно, если бы мозг не был уже досыта и до бесчувствия забит впечатлениями насилия и ужаса».

В сентябре 1918 года Меньшикова арестовали, и уже через пять дней расстреляли. В заметке опубликованной в «Известиях» говорилось: «Чрезвычайным полевым штабом в Валдае расстрелян известный черносотенный публицист Меньшиков. Раскрыт монархический заговор, во главе которого стоял Меньшиков. Издавалась подпольная черносотенная газета, призывающая к свержению советской власти».

В этом сообщении не было ни слова правды. Не было никакого заговора и никакую газету Меньшиков тогда уже не выпускал.

Ему мстили за его прежнюю позицию стойкого русского патриота. В письме жене из тюрьмы, где он просидел шесть дней, Меньшиков писал, что чекисты не скрывали от него, что этот суд есть «акт мести» за его статьи, печатавшиеся до революции.

Казнь выдающегося сына России произошла 20 сентября1918 года на берегу Валдайского озера напротив Иверского монастыря. Его вдова, Мария Васильевна, ставшая вместе с детьми свидетелем расстрела, написала потом в своих воспоминаниях: «Придя под стражей на место казни, муж стал лицом к Иверскому монастырю, ясно видимому с этого места, опустился на колени и стал молиться. Первый залп был дан для устрашения, однако этим выстрелом ранили левую руку мужа около кисти. Пуля вырвала кусок мяса. После этого выстрела муж оглянулся. Последовал новый залп. Стреляли в спину. Муж упал на землю. Сейчас же к нему подскочил Давидсон с револьвером и выстрелил в упор два раза в левый висок. <…> Дети расстрел своего папы видели и в ужасе плакали. <…> Чекист Давидсон, выстрелив в висок, сказал, что делает это с великим удовольствием».

Сегодня могила Меньшикова, чудом сохранившаяся, находится на старом городском кладбище города Валдай (Новгородская область), рядом с церковью Петра и Павла. Только много лет спустя родные добились реабилитации знаменитого писателя. В 1995 году новгородские писатели при поддержке администрации общественности Валдая открыли на усадьбе Меньшикова мраморную мемориальную доску со словами: «Расстрелян за убеждения».

В связи с юбилеем публициста в Санкт-Петербургском государственном морском техническом университете прошли всероссийские Меньшиковские чтения. «В России не было и нет равного Меньшикову публициста», – подчеркнул в своем выступлении председатель Общероссийского движения поддержки флота капитан 1 ранга запаса Михаил Ненашев.

Владимир Малышев

С технической точки зрения двигатели внутреннего сгорания в любом гибридном автомобиле являются узлами, экстендерами, позволяющими увеличить дальность поездки этого автомобиля. Этот термин относиться к двигателям, которые только вращают электрогенератор, отдающий вырабатываемую энергию электродвигателям автомобиля и заряжающий аккумуляторные батареи. В подавляющем большинстве случаев двигатели-экстендеры представляют собой малогабаритные классические двигатели внутреннего сгорания, обладающие всеми узлами и недостатками таких двигателей. Но исследователи из Немецкого космического центра (DLR) разработали новый тип экстендера, которые построен на базе линейного бесклапанного двигателя внутреннего сгорания и который может работать практически на любом виде топлива.

Линейный генератор со свободными поршнями состоит из камеры сгорания, двух поршней, линейных электрогенераторов и возвратных газовых пружин. Двигатель экстендера работает почти также, как работают обычные двигатели, за счет воспламенения топливно-воздушной смеси в камере сгорания, за счет чего производится движение поршней. Однако, вместо того, чтобы за счет коленчатого вала осуществлять преобразование линейного перемещения поршня во вращательное движение вала, устройство преобразует кинетическую энергию движения поршней непосредственно в электрическую энергию.

Взрыв топливно-воздушной смеси в камере сгорания толкает оба поршня в стороны от центра камеры, сжимая газовые пружины, которые замедляют движение и толкают их обратно. Двигатель экстендера работает с частотой 40-50 Гц и вырабатывает до 35 кВт электрической энергии.

"Принципы построения линейных двигателей внутреннего сгорания известны инженерам уже достаточно давно" - рассказывает Ульрих Вагнер (Ulrich Wagner), директор Отдела энергетики и транспорта агентства DLR, - "Но за счет использования газовых пружин оригинальной конструкции наши инженеры добились потрясающей стабильности работы такого двигателя. А за счет использования мощного электронного блока динамического управления нам удается с высокой точностью регулировать работу всех компонентов двигателя, заставляя их взаимодействовать как единое целое".

Система электронного управления, созданная инженерами DLR, управляет движение поршней линейного двигателя с точность одной десятой доли миллиметра, определяя колебания давления в ходе процесса сгорания топлива и делая компенсацию этих колебаний. Такой механизм также позволяет гибко регулировать степень сжатия, скорость движения поршней и рабочий объем камеры сгорания. Такие возможности позволяют использовать в качестве топлива бензин, дизельное топливо, природный газ, биотопливо, этанол и водород.

Система управления линейного генератора со свободными поршнями позволяет устройству самостоятельно выбирать тот режим работы, который является максимально эффективным при данной скорости движения автомобиля и испытуемой им нагрузке, что позволяет сократить до минимума количество выбросов вредных веществ в окружающую среду. Отсутствие коленчатого вала, распределительного вала и других обязательных атрибутов обычных двигателей внутреннего сгорания позволяют изготовить такие генераторы с меньшим количеством затрат, а значит, и по более низкой стоимости.

Небольшие размеры нового генератор позволяют без особого труда установить его на любой из серийно выпускаемых сейчас гибридных автомобилей для того, чтобы расширить дополнительную дальность его поездки минимум на 600 километров, не увеличивая, при этом, веса автомобиля.

Первый опытный образец нового линейного генератора был недавно продемонстрирован на испытательном стенде института DLR Institute of Vehicle Concepts в Штутгарте. А сейчас, специалисты DLR совместно с компанией Universal Motor Corporation GmbH работают над созданием первых промышленных образцов, испытания которых будут проводиться на гибридных автомобилях различных марок.