Синие пигменты красных водорослей называются. Цвет пигментов водорослей и фотосинтез. Осмотр больного с заболеванием органов дыхания. Патологические формы грудной клетки. Определение дыхательной экскурсии грудной клетки

Тема. Бурые водоросли. Красные водоросли или багрянки.
Цель: познакомить учащихся с особенностями строения, процессами жизнедеятельности и разнообразием бурых и красных водорослей, показать их значение в природе; Далее формировать общие учебные умения и навыки работы с микроскопом, микропрепаратами и учебником, находить в тексте ответы на поставленные вопросы, сравнивать, обобщать, делать выводы.
Оборудование: таблица «Водоросли», стенд «Эволюция растений».
I . Мотивация учебной деятельности. / Беседа /
1.Назовите признаки присущие растениям?
2. Почему растения имеют зеленую окраску?
3.Какой способ питания присущ растениям?
II . Актуализация опорных знаний. / Беседа /
1.Назовите признаки присущие диатомовых водорослей. Какова их строение?
2.Какой тип питания в диатомовых водорослей?
3. В каких средах обитают диатомовые водоросли? Какие у них есть жизненныеформы?
4. По каким признакам различают диатомовые водоросли? Как движутся диатомовыеводоросли?
5. Какие особенности запасания питательных веществ в диатомовых водорослей?
6. Назовите, как происходит размножение у диатомовых водорослей?
7. Какова роль диатомовых водорослей в природе и хозяйственной деятельностичеловека?
III . Изучение нового материала.
1. Бурые водоросли. / Рассказ, беседа, сообщения учащихся, заполнение таблицы /
Бурые водоросли - многоклеточные растения, наиболее распространены в морях умеренных ихолодных широт. Бурую окраску обусловлено наличием зеленых, желтых икоричневых пигментов. Основная составляющая растений, вещество ламинарин, такжеоткладываются масла, крахмал и йод. Есть все типы размножения: вегетативное - осуществляется частями слоевища, бесполое - с помощью выводковых почек,
спорами и зооспорами и половое с помощью гамет, образующихся в гаметангиях. Свойственно четкое чередование полового и бесполого поколений. живут на средних глубинах 20 - 30 м, где поглощают зеленые и голубые лучи. имеют сильно разветвленное слоевище. Органы прикрепления - ризоиды
Клетки размещены в несколько рядов. Клеточные слои представлены двумя слоями. Внешний слой слизистый (пектины и соли альгинаты), а внутренность образована из целлюлозы.

Значение бурых водорослей в природе - они способны создавать большое количество органического вещества, а для человека - наличием в них ценных химических веществ: ламинарин, альгинаты, питательные вещества, витамины, йод, бром, используют в качестве удобрения. Представители: ламинария или морская капуста, укус, накроцистис, саргассум, цистозейра.

2.Красные водоросли или багрянки. / Рассказ, беседа, сообщения учащихся, заполнения таблицы /
Красные водоросли живут на глубине 200 - 250 м. Это в основном многоклеточные организмы, только некоторые виды этих водорослей являются одноклеточными или колониальными.
Их талом расчленен и имеет вид кустиков или пластинок. к субстрату прикрепляется с помощью ризоидов или подошвы. клеточный покров
представлен несколькими слоями в составе которых есть целлюлоза пектины и агар, у некоторых видов откладываются минеральные соли. Кроме зеленых пигментов красные водоросли содержат красные, синие и желтые пигменты. Красные и синие пигменты - фикобилины. Разное сочетание фикобилины с желтыми и зелеными пигментами придаёт розовое, красное, оранжево-желтое, фиолетовое или почти черную окраску. клетки в них одно и многоядерные. Основное вещество - багрянковый крахмал.
Размножение осуществляется вегетативно - частями таллома и дополнительными «Побегами», Неполовой - спорами, поло - с участием гамет. Ни спор, ни гамет багрянок не имеют жгутиков. В них отсутствуют жгутиковые стадии. Красные водоросли - преимущественно морские организмы, только отдельные виды встречаются в пресных водоемах и влажной почве суши. Красные водоросли - источник пищи для
морских животных, обогащают водоемы кислородом, участвуют в самоочищении
воды. Они имеют большое хозяйственное значение. Их используют в пищу, на корм скоту, как удобрение, в медицине, добывают йод. Представители: порфира, Коралина, филлофора.

I V. Обобщение и систематизация изученного.беседа
1.Назовите характерные признаки бурых водорослей?
2.Назовите характерные признаки красных водорослей?
3.Бурые водоросли, Какое строениеОни имеют? Какие имеют они пигменты?
4. Какое устроение имеют красные водоросли? Какие пигменты они имеют?
5. Как размножаются бури и красные водоросли?
6.Какая значимость бурых водорослей в природе и в хозяйственной деятельности человека?
тестирование
1.Колор бурых водорослей определяют такие пигменты: а) красные; б) коричневые; в) зеленые; г) желтые д) синие.
2.Колор красных водорослей определяют такие пигменты: а) красные; б) желтые; в) бури; г) синие; д) зеленые.
3. Исключительно многоклеточные организмы - это: а) зеленые водоросли; б) диатомовые водоросли; в) бурые водоросли; г) красные водоросли.
4. Для пищевой промышленности вещество ламинарин получают из: а) бурых; б) диатомовых; в) зеленых; г) красных водорослях.
5.Половые гаметы образуются в специальных органах гаметангиях в а) зеленых; б) бурых; в) диатомовых; г) красных водорослях.
6.В процессе размножения отсутствуют жгутиковые стадии в: а) зеленых; б) бурых; в) диатомовых; г) красных водорослей.
7.Чёткое чередование поколений свойственно: а) зеленым; б) диатомовым; в) бурым; г) красным водорослям.
8.Покров клеточный представлен двумя слоями в: а) зеленых; б) диатомовых; в) бурых; г) красных водорослей.
9.Запас вещества багрянковый крахмал откладывается в клетках: а) зеленых; б) диатомовых; в) бурых; г) красных водорослей.
10.К жизни в холодных морях на глубине 20 - 30 м приспособлены а) зеленые; б) диатомовые; в) красные водоросли; г) бури.
11.Фикобилины - это сочетание таких пигментов а) бурых и желтых; б) красных и синих; в) желтых и коричневых.
12.В состав клеток слоевища красных водорослей входят следующие вещества: а) агар и минеральные соли; б) пектиновые вещества и альгинаты.
ответы:

V. Итоги урока
Обратная связь На сегодняшнем уроке я понял... Узнал... Оценка работы учащихся на уроке
VI . Домашнее задание:
1.Прочитать §30, §31 конспект;
2.Проработать задания на с.130, 134.
3.Подготовить сообщение «События в природе, обусловивших выход растений на сушу »,« Высшие споровые растения ».

ПОЧЕМУ ЛУЧИ СИНЕЙ ЧАСТИ СПЕКТРА ДОСТИГАЮТ БОЛЬШИХ ГЛУБИН, НЕЖЕЛИ КРАСНОЙ?

Из альгологии, раздела ботаники, посвященному всему, что касается водорослей, мы можем узнать, что водоросли разных отделов способны обитать на разных глубинах водоемов. Так, зеленые водоросли встречаются обычно на глубине в несколько метров. Бурые водоросли могут жить на глубинах до 200 метров. Красные водоросли - до 268 метров.

Там же, в книгах и учебниках по альгологии, вы найдете объяснение этим фактам, устанавливающее взаимосвязь между цветом пигментов в составе клеток водорослей и предельной глубиной обитания. Объяснение примерно следующее.

Спектральные компоненты солнечного света пронизывают воду на разную глубину. Красные лучи проникают лишь в верхние слои, а синие - значительно глубже. Для функционирования хлорофилла необходим красный свет. Именно поэтому зеленые водоросли не могут жить на больших глубинах. В составе клеток бурых водорослей присутствует пигмент, позволяющий осуществлять фотосинтез при желто-зеленом свете. И потому порог обитания этого отдела достигает 200 м. Что касается красных водорослей, то пигмент в их составе использует зеленый и синий цвета, что и позволяет им жить глубже всех.

Но соответствует ли данное объяснение действительности? Давайте попробуем разобраться.

В клетках водорослей отдела Зеленых преобладает пигмент хлорофилл . Именно поэтому данный тип водорослей окрашен в различные оттенки зеленого.

В красных водорослях очень много пигмента фикоэритрина , характеризующегося красным цветом. Этот пигмент и придает данному отделу этих растений соответствующий цвет.

В бурых водорослях присутствует пигмент фукоксантин – бурого цвета.

То же самое можно сказать о водорослях других цветов – желто-зеленых, сине-зеленых. В каждом случае цвет определяется каким-то пигментом или их сочетанием.

Теперь о том, что такое пигменты и для чего они нужны клетке.

Пигменты требуются для фотосинтеза. Фотосинтез – это процесс разложения воды и углекислого газа с последующим построением из водорода, углерода и кислорода всевозможных видов органических соединений. Пигменты накапливают солнечную энергию (фотоны солнечного происхождения). Эти фотоны как раз используются для разложения воды и углекислого газа. Сообщение этой энергии – это своего рода точечный нагрев мест соединения элементов в молекулах.

Пигменты накапливают все виды солнечных фотонов, которые достигают Земли и проходят сквозь атмосферу. Ошибкой было бы считать, что пигменты «работают» только с фотонами видимого спектра. Они накапливают также инфракрасные и радио фотоны. Когда световые лучи не заслоняются на своем пути различными плотными и жидкими телами, большее число фотонов в составе этих лучей достигает обогреваемое тело, в данном случае водоросль. Фотоны (энергия) нужны для точечного разогрева. Чем больше глубина водоема, тем меньше энергии достигает, тем больше фотонов поглощается на пути.

Пигменты разного цвета способны задерживать – аккумулировать на себе – разное количество фотонов, приходящих со световыми лучами. И не только приходящих с лучами, но и движущихся диффузно – от атома к атому, от молекулы к молекуле – вниз, под действием притяжения планеты. Фотоны видимого диапазона выступают только в качестве своего рода «маркеров». Эти видимые фотоны указывают нам цвет пигмента. И одновременно сообщают этим особенности Силового Поля этого пигмента. Цвет пигмента нам об этом и «говорит». Т.е. Поле Притяжения преобладает или Поле Отталкивания, и какова величина того или другого. Вот и выходит, в соответствии с этой теорией, что пигменты красного цвета должны иметь наибольшее по величине Поле Притяжения – иначе говоря, наибольшую относительную массу. А все потому, что фотоны красного цвета, как обладающие Полями Отталкивания, сложнее всего удержать в составе элемента – притяжением. Красный цвет вещества как раз нам и указывает на то, что фотоны такого цвета в достаточном количестве накапливаются на поверхности его элементов – не говоря о фотонах всех остальных цветов. Такой способностью – удерживать больше энергии на поверхности – как раз и обладает названный ранее пигмент фикоэритрин.

Что касается пигментов других цветов, то качественно-количественный состав аккумулируемого ими на поверхности солнечного излучения будет несколько иным, нежели у пигментов красного цвета. К примеру, хлорофилл, обладающий зеленой окраской, будет накапливать в своем составе меньше солнечной энергии, чем фикоэритрин. На этот факт нам как раз и указывает его зеленый цвет. Зеленый – комплексный. Он складывается из самых «тяжелых» желтых видимых фотонов и самых «легких» синих. В ходе своего инерционного движения те и другие оказываются в равны условиях. Величина их Силы Инерции равная. И потому они совершенно одинаково подчиняются в ходе своего движения одним и тем же объектам с Полями Притяжения, воздействующим на них своим притяжением. Это означает, что в фотонах синего и желтого цвета, формирующим вкупе зеленый, возникает по отношению к одному и тому же химическому элементу одна и та же по величине Сила Притяжения.

Здесь следует отвлечься и пояснить один важный момент.

Цвет веществ в том виде, в каком он нам знаком по окружающему миру – т.е. как испускание видимых фотонов в ответ на падение (не только видимых фотонов, и не только фотонов, но и других типов элементарных частиц) – явление достаточно уникальное. Оно возможно лишь благодаря тому, что в составе небесного тела, обогреваемого более крупным небесным телом (породившим его), происходит постоянное течение всех этих свободных частиц от периферии к центру. К примеру, наше Солнце испускает частицы. Они достигают атмосферы Земли и движутся вниз – прямыми лучами или диффузно (от элемента к элементу). Диффузно распространяющиеся частицы ученые именуют «электричеством». Все это было сказано для того, чтобы пояснить, почему фотоны разных цветов – синие и желтые обладают одинаковой Силой Инерции. Но Силой Инерции могут обладать лишь движущиеся фотоны. А это означает, что в каждый момент времени по поверхности любого химического элемента в составе освещаемого небесного тела движутся свободные частицы. Они проходят транзитом – от периферии небесного тела к его центру. Т.е. состав поверхностных слоев любого химического элемента постоянно обновляется .

Сказанное совершенно справедливо для фотонов двух других комплексных цветов – фиолетового и оранжевого.

И это еще не все объяснение.

Любой химический элемент устроен точно по образу любого небесного тела. В этом и заключается истинный смысл «планетарной модели атома», а вовсе не в том, что электроны летают по орбитам как планеты вокруг Солнца. Никакие электроны в элементах не летают! Любой химический элемент – это совокупность слоев элементарных частиц – простейших (неделимых) и комплексных. Также как любое небесное тело – это последовательность слоев химических элементов. Т.е. комплексные (нестабильные) элементарные частицы в химических элементах выполняют ту же функцию, что и химические элементы в составе небесных тел. И точно также как в составе небесного тела более тяжелые элементы располагаются ближе к центру, а более легкие – ближе к периферии, Так же и в любом химическом элементе. Ближе к периферии располагаются более тяжелые элементарные частицы. А ближе центру – более тяжелые. Это же правило распространяется на частицы, транзитно проходящие по поверхности элементов. Более тяжелые, чья Сила Инерции меньше, ныряют глубже к центру. А те, что легче и чья Сила Инерции больше, образуют более поверхностные текучие слои. Это означает, что если химический элемент красного цвета, то его верхний слой из фотонов видимого диапазона образован красными фотонами. А под этим слоем располагаются фотоны всех остальных пяти цветов – по нисходящей – оранжевый, желтый, зеленый, синий и фиолетовый.

Если же цвет химического элемента зеленый, то это означает, что верхний слой его видимых фотонов представлен фотонами, дающими зеленый цвет. А вот слоев желтого, оранжевого и красного цветов у него нет или практически нет.

Повторим – более тяжелые химические элементы обладают способностью удерживать более легкие элементарные частицы – красного цвета, например.

Таким образом, не совсем корректно говорить, что для фотосинтеза одних водорослей нужна одна цветовая гамма, а для фотосинтеза других – другая. Точнее сказать, взаимосвязь между цветом пигментов и предельной глубиной обитания прослежена верно. Однако объяснение верно не до конца. Энергия, требующаяся водорослям для фотосинтеза, состоит не только из видимых фотонов. Не следует забывать про ИК и радио фотоны, а также УФ. Все эти виды частиц (фотонов) требуются и используются растениями при фотосинтезе. А вовсе не так – хлорофиллу нужные преимущественно красные видимые фотоны, фукоксантину – желтые и образующие зеленый цвет, а фикоэритрину – синие и зеленые. Вовсе нет.

Ученые совершенно верно установили факт, что световые лучи синего и зеленого цветов способны достигать в большем количественном составе больших глубин, нежели желтые лучи, и тем более – красные. Причина все та же – разная по величине Сила Инерции фотонов.

Среди частиц Физического Плана, как известно, в состоянии покоя только у красных есть Поле Отталкивания. У желтых и синих вне состояния движения – Поле Притяжения. Поэтому инерционное движение только у красных может длиться бесконечно. Желтые и синие с течением времени останавливаются. И чем меньше Сила Инерции, тем быстрее произойдет остановка. Т. е. световой поток желтого цвета тормозится медленнее зеленого, а зеленый – не так быстро, как синего. Однако, как известно, в естественных условиях монохроматического света не бывает. В световом луче смешаны частицы разного качества – разных подуровней Физического Плана и различных цветов. И в таком смешанном световом луче частицы Ян поддерживают инерционное движение частиц Инь. А частицы Инь, соответственно, тормозят Ян. Большой процент частиц какого-то одного качества несомненно сказывается на общей скорости светового потока и на средней величине Силы Инерции.

Фотоны проникают в толщу воды, двигаясь либо диффузно, либо прямолинейно. Диффузное движение - это движение под действием Сил Притяжения химически элементов, в среде которых происходит движение. Т.е. фотоны передаются от элемента к элементу, но при этом общее направление их перемещения остается все тем же – в сторону центра небесного тела. При этом сохраняется инерционный компонент их движения. Однако траектория их движения постоянно контролируется окружающими элементами. Вся совокупность движущихся фотонов (солнечных) образует своего рода газовые атмосферы химических элементов – как у небесных тел – планет. Для того чтобы понять, что представляют из себя химические элементы, вы должны чаще обращаться к книгам по астрономии. Поскольку аналогия между небесными телами и элементами полнейшая. Фотоны скользят в этих «газовых оболочках», постоянно сталкиваясь друг с другом, притягиваясь и отталкиваясь – т.е. ведут себя в точности как газы атмосферы Земли.

Таким образом, фотоны движутся вследствие действия в них двух Сил – Инерции и Притяжения (к центру небесного тела и к элементам, в среде которых они движутся). В каждый момент времени движения любого фотона, чтобы узнать направление и величину суммарной силы, следует пользоваться Правилом Параллелограмма.

Фотоны красного цвета слабо поглощаются средой, в которой движутся. Причина – их Поля Отталкивания в состоянии покоя. Из-за этого у них велика Сила Инерции. Стакиваясь с химическими элементами, они с большей вероятностью отскакивают, нежели притягиваются. Именно поэтому меньшее число красных фотонов проникает в водную толщу по сравнению с фотонами других цветов. Они отражаются.

Фотоны синего цвета, напротив, способны проникать глубже фотонов других цветов. Их Сила Инерции наименьшая. При столкновении с химическими элементами они тормозятся – их Сила Инерции уменьшается. Они тормозятся и притягиваются элементами – поглощаются. Именно это – поглощение вместо отражения – позволяет большему числу синих фотонов проникать вглубь водной толщи.

Сделаем вывод.

В альгологии неверно используется для объяснения зависимости между цветом пигментов и глубиной обитания верно подмеченный факт – разная способность проникать в водную толщу фотонов разного цвета.

Что касается цветов, то вещества, окрашенные в красный, обладают большей массой (притягивают сильнее), нежели вещества, окрашенные в любой другой цвет. Вещества, окрашенные в фиолетовый, обладают наименьшей массой (наименьшим притяжением).

ВОДОРОСЛИ

Общая характеристика

Водоросли представляют собой большую группу низших расте ний — от микроскопически малых, одноклеточных организмов до многоклеточных гигантов. Термин «водоросли» не является систе матической единицей. Под названием «водоросли» объединяется несколько систематических отделов низших растений, имеющих различное происхождение, характеризующихся сходным образом жизни и автотрофным типом питания. Как показывает название, для водорослей обычно характерен водный образ жизни.

Тело водорослей, как и других низших растений, представляет собой слоевище — таллом, не расчлененное на корень, стебель и лист, и у большинства видов имеет простое анатомическое строение. Водоросли содержат в своих клетках хлорофилл, способны фотосинтезировать. Строение клетки, тела, способы размножения различны у отдельных предста вителей этой группы растительных отделов.

Клетки большинства водорослей имеют целлюлозную оболочку; встречаются клетки, содержимое которых окружено лишь тонкой пограничной мембраной. Клеточные оболочки водорослей разнообразны по строению и химическому составу. Основой оболочки является белково - углеводный комплекс. Оболочке свойственны неоднородность, слоистость. Слои отличаются один от другого по толщине, плотности и химическому составу. Нередко оболочки пропитываются органическими соединениями (лигнином и кутином).

В оболочке имеются особые отверстия — поры. Помимо пор, оболочки клеток многих водорослей снабжены различного рода выро стами — щетинками, шипиками и чешуйками.

В протопласте клетки различают ядро и цитоплазму. У боль шинства водорослей в клетке имеется только одно ядро, но иногда их бывает 2, 3 и больше. Клетки сине-зеленых водорослей лишены оформленного ядра. Форма, размеры и местоположение ядра в клетке у разных водорослей сильно варьируют. В ядре у водорослей име ются те же структуры, что и в ядрах других растений: оболочка, ядерный сок, ядрышко, включения хроматина.

Цитоплазма состоит из основного вещества (стромы) и погруженных в него телец (органелл). Отличительной особенностью кле ток водорослей является слабое развитие эндоплазматическои сети.

В специфических органеллах — хлоропластах (названных хро матофорами) находятся тельца, богатые белковыми веществами, которые называются пиреноидами. Пиреноид окружен обкладкой в виде кольца или отдельных пластинок обычно крахмальной природы. В хлоропластах содержится зеленый пигмент хлорофилл, существующий в нескольких формах .

Кроме хлорофилла, водоросли содержат и другие пигменты, ко торые часто своим присутствием маскируют зеленую окраску водо рослей. Наиболее характерными и часто встречающимися пигмен тами водорослей, кроме хлорофилла (зеленый), каротина (желто- оранжевый) и ксантофилла (желтый), являются фикоциан, фико- эритрин и фукоксантин. Пигмент фикоциан, растворимый в воде, окрашивает водоросли в синий цвет (сине-зеленые водоросли); фикоэритрин, тоже растворимый в воде, придает красную окраску (красные водоросли); фукоксантин обусловливает бурую окраску (бурые водоросли).

Обладая пигментами, водоросли придают субстрату, на котором они поселяются, различную окраску. В Антарктиде, например, советскими учеными были открыты 3 озера с различной окраской воды: синей, зеленой и красной. Цвет воды этих озер был обусловлен наличием в них очень мелких водорослей соответствующей окраски. Ледяные берега Гренландии во многих местах с наступлением весен него потепления окрашиваются в красный (кровяной) цвет, что объясняется массовым размножением водорослей с красной окрас- кой.

Название Красного моря обязано произрастанию в большом количестве в этом море водорослей, имеющих красноватый оттенок. Различная окраска водорослей имеет приспособительное значе ние. Дневной свет к водорослям, погруженным глубоко в воду, доходит всегда в измененном составе. Вода сравнительно хорошо пропускает синие и зеленые и сильно поглощает красные и желтые лучи. На больших глубинах задержание зеленых лучей одним хлорофиллом происходит плохо, ему на помощь приходит красный пигмент, который легко поглощает зеленые лучи. Поэтому красные, или багряные, водоросли распространены на большой глубине морей.

По форме и размерам водоросли очень разнообразны. Встре- чаются микроскопически малые и достигающие огромных размеров (до 50 м и более) одноклеточные и многоклеточные формы. Переходную ступень между ними занимают колониальные водоросли. Колонии состоят из нескольких неплотно соединенных однородных клеток. С увеличением размеров водорослей происходит и некото рая дифференциация их тела. Например, у бурых водорослей, дости гающих крупных размеров, таллом сильно расчленен. Такие водоросли прикрепляются к субстрату тонкими бесцветными нитями, которые называются ризоидами.

Существуют одноклеточные водоросли, у которых тело достигает больших размеров 0,5 м и больше. Они имеют большое количество ядер и хроматофоров. Внешне тело такой водоросли имеет расчле нение, но внутри перегородок нет, т. е. является одноклеточной. Примером такой гигантской одноклеточной водоросли может слу жить морская каулерпа.

Размножение водорослей может быть вегетативное, бесполое и половое. Вегетативное размножение осуществляется частями тела водорослей. Бесполое размножение происходит за счет образования зооспор, реже спор. Половой процесс у различных типов водорослей представлен: изогамией, гетерогамией, оогамией и автогамией.

У некоторых более высокоорганизованных водорослей (красных, бурых) наблюдается чередование полового и бесполого поколений.

Водоросли характеризуются большим разнообразием. Общее количество их видов свыше 20 тыс. Классификация водорослей очень сложна, и в настоящее время она еще не закончена. Виды объединяются в более крупные систематические единицы — роды, семей ства, порядки, классы, отделы (типы).

Все разнообразие водорослей объединяют обычно в 6...10 крупных отделов (типов), представители которых отличаются по строе нию, способу размножения, происхождению, но чаще всего пред ставители этих отделов различаются между собой по окраске.

В данном учебнике рассмотрено 6 отделов водорослей: сине- зеленые, разножгутиковые, диатомовые, зеленые, бурые и крас ные.

Водоросли имеют очень древнее происхождение, в котором много еще неясного. Нет единой точки зрения на родственные отношения между отделами водорослей. Некоторые представители их произошли, по-видимому, от более простых организмов типа жгутиковых, а сами водоросли являются предками некоторых более раз витых растений (грибы, мхи).

Представители современного разнообразного мира водорослей имеют различную древность по своему происхождению, они появились в разные геологические эры. Наиболее древними считаются сине-зеленые водоросли.

Эволюция водорослей шла от подвижных форм к неподвижным. Более примитивными и древними группами водорослей считаются те, которые проводят жизнь в подвижном состоянии; более органи зованным водорослям свойствен неподвижный образ жизни. Путь эволюции водорослей шел от простейших — одноклеточных микро скопически малых форм к многоклеточным сложным формам.

Как уже говорилось, в подавляющем большинстве водоросли живут в водной среде. Одни из них растут в соленой воде океанов и морей, другие — в реках, прудах и пресноводных озерах. Боль шое влияние на распространение водорослей по глубинам водоемов оказывает свет, поэтому в поверхностных слоях воды количество водорослей всегда больше. Морские водоросли красные и бурые часто образуют огромные подводные заросли, которые занимают десятки километров. В зависимости от местообитания водоросли делятся на 2 большие группы: бентосные и планктонные.

Бентосные, или донные, водоросли обитают, прикрепившись ко дну или подводным предметам, и образуют заросли главным образом в прибрежной полосе. Планктонные водоросли живут в воде во взвешенном состоянии, не прикрепляясь ко дну, они могут перено ситься движением воды.

Водоросли живут не только в воде, они встречаются на поверх ности почвы, в почве, на деревьях, на сваях, но всегда на увлаж ненных местах. Часто, особенно ранней весной, почвы «зацветают», или «зеленеют», что объясняется развитием колоссального коли чества микроскопически малых водорослей. «Зацветание» почвы от водорослей происходит в различных районах Советского Союза - в северных, степных и даже пустынных. Разрастаясь в большом количестве, они создают условия для развития бактерий и других микроорганизмов.

Водоросли имеют большое значение в природе и широко исполь зуются человеком.

Как автотрофные растения они перерабатывают огромное коли чество минеральных веществ и углекислого газа в органическую массу. Водоросли создают огромные запасы пищи для животного мира морей, океана и пресноводных водоемов. Так, 1 га зарослей водорослей может дать урожай, равный 100 т сырой или 10 т сухой массы.

Водоросли вырабатывают колоссальное количество кислорода.

Развитие рыбного хозяйства неразрывно связано с водорослями. Поглощая много углекислого газа и выделяя кислород, водоросли очищают водоемы.

В приморских странах (Англия, Франция, Норвегия, Ирландия и др.), особенно в Японии, водоросли широко употребляются в пищу (морская капуста и др.) и на корм скоту (в сыром, сухом и силосо ванном виде). Некоторые водоросли используют для удобрения полей.

Многие водоросли накапливают большое количество йода и брома. Йода содержится в золе водорослей около 0,2% от сухой массы. Часто водоросли являются основным источником йода. Вываривая, красные и бурые водоросли, получают ценное вещество — агар-агар, который употребляется в микробиологии как питательная среда для выращивания микроорганизмов, а также в кондитерской промышленности при изготовлении мармелада и пр.

В древние геологические эпохи диатомовые водоросли вместе с кремнеземом образовали осадочную породу — трепел, который употребляется в производстве динамита, кирпича, для полировки предметов и др.

В пресных водоемах водоросли участвуют в образовании сапропе ля, или органического ила. Сапропель содержит большое количест во органических веществ и часто используется для грязелечения. Сапропель, который содержит большое количество солей кальц ия, фосфора, железа, может быть использован на корм сельско хозяйственным животным.

Водоросли, особенно морские, могут принести и вред, когда в большом количестве покрывают подводные части корабля. При массовом отмирании водорослей происходит порча воды и, как следствие, гибель рыбы.

Отдел сине-зеленые водоросли

Сине-зеленые водоросли, или цианеи, являются наиболее примитивными и наиболее древними по происхождению организмами. На основании палеоботанических данных установ лено, что современные сине-зеленые водоросли мало чем отличаются от своих ископаемых предков. В большинстве случаев они представлены одноклеточными формами, хотя имеются и многоклеточ ные формы, собранные в колонии.

Как показывает само название этого отдела водорослей, для них характерна сине-зеленая окраска различных оттенков в зависи мости от соотношения пигментов — хлорофилла, каротина, фико- цианина и фикоэритрина.

Оболочка клетки сине-зеленых водорослей состоит из пектино- вых веществ и покрыта снаружи слизистым веществом. В их клет- ках отсутствуют морфологически обособленное ядро и хроматофоры, цитоплазма пропитана пигментами, и поэтому называется хромато плазмой.

В процессе ассимиляции вместо обычного растительного крах- мала образуется углевод гликоген (животный крахмал).

Размножаются сине-зеленые водоросли очень быстро, простым делением клеток пополам. Половой процесс размножения у них отсутствует.

По строению и характеру деления клетки сине-зеленых водо- рослей сходны с бактериями. Они, так же как и бактерии, не имеют ясно выраженного ядра, жгутиковые стадии развития у них отсут ствуют. У некоторых сине-зеленых водорослей (нитчатых) размно жение происходит участками, на которые распадаются эти водоросли. Такие участки называются гормогониями. При неблаго приятных условиях из обычных клеток образуются споры, которые покрываются утолщенной оболочкой. Она предохраняет содержимое от неблагоприятных условий, благодаря чему водоросль сохраняет жизнеспособность в течение длительного времени. При наступлении благоприятных условий споры прорастают и дают начало новой клетке.

Обитают сине-зеленые водоросли преимущественно в пресных водах — прудах, озерах, реках, но встречаются также в морях, на поверхности почвы, на скалах. Сине-зеленые водоросли могут жить как при низких температурах на снегу и льду, так и при высо ких температурах (до 80 °С) в горячих ключах. После отмирания клеток масса водорослей в виде хлопьев грязно-зеленоватого цвета всплывает на поверхность воды.

Древнее происхождение, недифференцированное строение кле ток, отсутствие оформленного ядра и полового процесса, размноже ние простым делением клетки, способность образовывать споры — все эти особенности указывают на примитивность сине-зеленых водорослей. По своему упрощен ному строению они значительно отличаются от других водоросл ей и ближе всего стоят к бактериям.

Сине-зеленые водоросли отличаются хорошей приспособ ляемостью к различным услови ям окружающей среды, что и способствовало сохранению их до наших дней без особых из менений.

Отдел сине-зеленые водоро сли объединяет около 1400 ви дов. Представителями этого отдела могут служить такие водо росли, как хроококк, осциллатория, носток и др.

Хроококк — одноклеточная водоросль шаро видной формы, иногда эти водоросли образуют как бы колонии. Часто такие водоросли собраны в группы по 2...4, разделенные тонкой перегородкой и окруженные общим довольно толстым слизи стым слоем.

Хроококк широко распространен на болотах среди водных рас тений, между кочками и среди тины.

Осциллатория — нитчатая сине-зеленая водоросль, распространенная в водоемах со стоячей водой, часто образует темно-зеленую пленку на поверхности воды или на илистом дне. Клетки этой водоросли имеют цилиндрическую форму, плотно соединены в одну нить.

Носток — нитчатая сине-зеленая водоросль, нити или цепочки ее соединены в колонии, часто шаровидной формы, размером с плод сливы. Снаружи эти колонии покрыты студенистой массой. Обитает носток по берегам прудов и озер, на влажной почве и на дне водоемов.

Некоторые сине-зеленые водоросли вместе с грибами образуют различные виды лишайников.

Отдел разножгутнковые водоросли

Разножгутиковые, или желто-зеленые, водоросли характеризуются тем, что их зооспоры имеют 2 неравных жгутика, причем короткий жгутик гладкий, а длинный — перистый. Хроматофоры желто-зеленого цвета, дисковидной формы. Одноклеточные, колониальные, нитчатые и неклеточные организмы. Примером может служить ботридиум.

Ботридиум — наиболее характерный пред ставитель разножгутиковых водорослей. Таллом представляет собой зеленый пузырек 1...2 мм в диаметре, с нижней стороны пузырька расположены бесцветные ветвистые выросты — ризоиды, которыми водоросль внедряется в почву. Это одноклеточная многоядериая водоросль. Середина пузырька заполнена клеточным соком, цитоплазма расположена постенно. Хроматофоры содержат много каро тиноидов, поэтому ботридиум имеет желтовато-зеленый цвет. Пиреноиды отсутствуют.

Размножается главным образом зооспорами, которые образуются в колоссальном количестве в середине пузырька. Обитает на сырой земле, по краям луж, образует на почве налеты темно-зеленого цвета.

Отдел диатомовые водоросли

Диатомовые, диатомеи, или кремнеземные, или бациллариевые, водоросли — чрезвы чайно разнообразные, микроскопически малые, в большинстве случаев одноклеточные организмы. Этот отдел водорослей характе ризуется своеобразным строением клеток. Клетка покрыта сплошной оболочкой в виде пектиновой, студнеобразной пленки, снаружи она охвачена кремнистым панцирем, который состоит из двух само стоятельных половинок, так называемых створок. Одна из этих ство рок покрывает другую, как крышка коробочку. Вдоль половинок панциря с обеих сторон имеется щелевидное отверстие. Через это отверстие цитоплазма клетки сообщается с внешней средой. Створ ки обладают исключительной прочностью. Они не переваривают ся животными и птицами, не разрушаются даже при накалива нии на огне. Существует свыше 5000 видов. Отличительными видо выми признаками служат форма клеток и различные утолщения на оболочках в виде рубчиков, сеток и пр.

Форма клеток отдельных видов диатомовых водорослей бывает удлиненно-квадратная, эллиптическая, круглая, звездчатая, в виде лент, спиралей и др. Клетки содержат цитоплазму, ядро и один или несколько хроматофоров. Кроме хлорофилла и фукоксантина, Хроматофоры содержат и другие пигменты желто-бурого цвета, поэтому Хроматофоры имеют желтый цвет. Крахмал в клетках диатомовых водорослей отсутствует, запасные вещества представ лены маслом.

Размножаются главным образом прямым делением, которое про ходит у них своеобразно. При делении каждая дочерняя клетка получает ядро, один хроматофор и только одну из створок оболочки, вторая створка образуется заново. Кроме прямого деления, диато мовые водоросли размножаются половым путем, когда сливаются две клетки, предварительно сбросившие оболочки.

Обитают диатомовые водоросли в морских и пресных водах, часто они являются основной составной частью планктона и служат ценной пищей для животных. Створки отмерших клеток водорослей опускаются на дно и постепенно образуют огромные отложения, известные, под названием "горная мука, диатомит, трепел.

Большие отложения диатомовых водорослей в виде диатомового и ла сосредоточены в приполярных областях океанов, около Аляски, Алеутских островов, в Охотском и Беринговом морях. Имеются они и в Балтийском море.

К диатомовым относятся пресноводная водоросль пиниуля рия, фрагилярия и табелля рия; эти водоросли образуют колонии в виде лент или цепочек; навикула растет кустовндной коло нией.

Отдел зеленые водоросли

Зеленые водоросли являются одним из наиболее разнообразных отделов водорослей", он объединяет около 5000 видов. Для представителей, этого отдела характерна зеленая окраска, которая обусловливается хлорофиллом и не маскируется какими- либо-другими пигментами. Зеленые водоросли представлены одно-клеточными, многоклеточными, колониальными формами. Зеленые водоросли имеют чаще всего нитчатое строение, нити состоят из одного ряда клеток. Клетка имеет целлюлозную оболочку, цито плазму, ядро и хроматофоры. Размножение происходит бесполым, вегетативным и половым путем зеленых водорослей обитает в воде, но некоторые из них живут и на суше, на тем.

Большинство представит илей живут на деревьях, на кам нях в сырых, затененных местах. В прудах и реках образуют тину.

Отдел зеленые водоросли делится на несколько классов, из кото рых рассмотрим равножгутиковые, или собственно зеленые, водоросли сцеплянки, или конъюгаты , и харовые, или лучицы Класс равножгутиковые Среди зеленых водо рослей этот класс наиболее обширный. Представители разнообразны по внешнему виду и внутреннему строению. Для них характерно наличие двух одинаковых жгутиков Этот класс объединяет одно клеточные и колониальные, подвижные и неподвижные формы. Класс разделяют на 8 порядков. Рассмотрим представителей 4 по рядков.

Порядок вольвоксовые . Наиболее характерными представителями порядка вольвоксоиые являются хламидомонада и вольвокс.

Хламидомонада — одноклеточная, подвижная водоросль. В большом количестве обитает в пресных мелководных водоемах — лужах, прудах, канавах вдоль дорог. При обильном размножении окрашивает воду в зеленый цвет. Представляет собой микроскопически малую клетку овальной или округлой формы. На одном (переднем) конце клетка вытянута в виде носика, на этом же конце имеются 2 равных жгутика, которые способствуют передвижению водоросли. Вся полость клетки запол нена цитоплазмой, в которой находится ядро, ближе к носику

Вольво кс, или волчок , является характерным примером колониальных форм микроскопических водорослей. Колония этой водоросли заметна невооруженным глазом, она достигает величины булавочной головки и имеет форму шара. Такая шарообразная колония вольвокса состоит из огромного количества клеток (до 50 тыс.), расположенных в один слой по периферии шара. Каждая клетка несет по 2 жгутика. Все жгутики расположены по периферии и способствуют передвижению всей колонии. Движение жгутиков всех клеток всегда согласованно. Полость шара запол нена жидкой слизью. Размножается вольвокс вегетативным и половым путем. При вегетативном размножении внутри материнской колонии (шара) образуется 8...15 дочерних колоний (шаров). При созревании дочерних колоний стенки взрослого шара разрываются и молодые колонии выходят наружу, после чего материнская коло ния погибает.

Половое размножение — оогамия — происходит только в наибо лее крупных клетках. При этом в клетках колонии вольвокса об разуются голые двухжгутиковые гаметы, сливаются лишь гаметы из разных особей водоросли.

Существует много видов вольвоксов. Все они распространены главным образом в непроточных хорошо прогреваемых пресно водных водоемах со стоячей водой — прудах, озерах, реже в реках

Хлорелла микроскопическая одноклеточная водоросль шаровидной формы. Для хлореллы характерны быстрое размножение и очень активный процесс фотосинтеза. Благодаря наличию большого количества пластид хлорелла отличается эффек тивным использованием солнечной энергии, обычные культурные растения потребляют всего 0,1% солнечной энергии при биохими ческих превращениях, а хлорелла — 2,5%, т. е. в 25 раз больше. Другое положительное качество хлореллы — очень быстрое размно жение.

Улотрикс нитчатая неветвящаяся водоросль, состоящая из одного ряда клеток. Нижняя бесцветная клетка нити имеет своеобразную удлиненную форму Этой клеткой водоросль прикрепляется к подводным предметам.

Нить улотрикса удлиняется за счет поперечного деления клеток и может неограниченно нарастать в длину. Клетки однородные, короткие, каждая из них цитоплазму, ядро, хроматоформ с пиреноидами. Размножается улотрикс главным образом бесполым путем, образуя 4-жгутиковые зооспоры. Эти зооспоры некоторое время двигаются, а затем оседают на какой-либо подводный предмет и прорастают в новую нить Половой процесс — изогамия. Причем мужские и женские гаметы внешне не различимы, но физио логически они разные и выходят из разных нитей, поэтому разные гаметы обозначаются знаком + и знаком —.

Улотрикс обитает в пресных водоемах, где им обрастают под водные предметы (камни, сваи), которые приобретают ярко-зеленый цвет.

Кладофора нитчатая зеленая водоросль. Слоевище состоит из ветвящихся нитей, образованных одним рядом многоядерных клеток, отдельные растения имеют вид подводных кустиков Клетки крупные, многоядерные, с толстой, слоистой облчкой. Встречается в пресных и соленых водах

Отдел красные водоросли, или багрянки насчи тывает более 600 родов и около 4000 видов. От других водорослей отличаются краской окраской, которая обусловливается наличием у них, кроме хлорофилла, еще двух пигментов — фикоэритрина (красного цвета) и фикоциана (сине-зеленого цвета). От соотноше ния этих пигментов зависит окраска водорослей (изменяется от красной до почти черной ). Представители отдела в подавляющем большинстве многоклеточ ные организмы сложного строения, и только наиболее примитивные имеют одноклеточное или колониальное слоевище. Чаще слоевище имеет форму кустиков, пластинок, у некоторых оно очень сильно расчленено.

Красные водоросли обитают в морях на больших глубинах, чем зеленые и бурые. Это объясняется тем, что красный пигмент способ ствует улавливанию на больших глубинах зеленых и синих лучей спектра и тем самым улучшает процесс фотосинтеза. В красных водорослях откладывается не обычный крахмал . В отличие от обычного крахмала он йодом окрашивается не в синий, а в красно- бурый цвет.

У красных водорослей отсутствуют зооспоры и сперматозоиды. Бесполое размножение у них происходит при помощи неподвижных спор. Половое размножение — оогамия, но вместо сперматозоидов образуются мужские клетки — спермации, они переносятся к яйцеклеткам водой. Яйцеклетки образуются в специальных органах — карпогонах.

_К красным водорослям относятся делессерия с талломом в виде кустика; полисифония у которой таллом имеет вид ветвящейся нити.

Отдел бурые водоросли

Для представителей отдела бурые водоросли харак терна бурая окраска, обусловленная присутствием в хроматофорах коричневого пигмента — фукоксантина. Наличие фукоксантина маскирует зеленый цвет и придает этим водорослям бурую окраску различных оттенков. Кроме фукоксантина, они содержат ксанто филл и каротин. Отдел бурых водорослей объединяет свыше 900 видов.

Бурые водоросли отличаются обычно крупным многоклеточным талломом. Самые крупные представители водорослей встречаются именно среди бурых водорослей. Некоторые из них, например мак роцистис, достигают 60 м длины, но имеются и мелкие формы вели чиной в несколько миллиметров.

Вместо крахмала в клетках бурых водорослей имеются глюко за и сахаристые вещества — манит и ламинарии, которые придают этим водорослям в вареном виде сладковатый вкус. В качестве запасного вещества они часто откладывают масла.

Таллом бурых водорослей многолетний, но листообразные пластинки отмирают ежегодно, а ранней весной нарастают вновь.

Сложное внешнее строение бурых водорослей обусловливает у них и дифференциацию в анатомическом строении (они имеют различной формы клетки). Некоторые ученые считают, что у этих водорослей имеются даже разные ткани.

Размножаются бурые водоросли различными способами. Неко торые из них размножаются примитивным половым путем — изога мией, когда сливаются 2 одинаковые по форме гаметы. У других, более развитых водорослей (ламинария) наблюдается более сложный половой процесс — оогамия, при котором крупная яйцеклетка сливается с мелкой подвижной мужской гаметой — сперматозои дом.

Бесполое размножение у бурых водорослей осуществляется зооспорами, которые образуются в большом количестве в зооспо рангиях. У бурых водорослей довольно четко выражено чередование поколений; бесполого и полового. На листовидных пластинках у этих водорослей образуются одноклеточные зооспорангии, собран ные в группы, среди которых располагаются бесплодные нити. В каждом зооспорангии образуется 16...64 и более зооспор. Зооспоры внешне одинаковы, а физиологически разные. Одни из них прорастают и образуют микроскопически малые жен ские, а другие — мужские гаметофиты. На мужских гаметофитах в дальнейшем образуются антеридии и в них по одному спермато зоиду, а на женских гаметофитах формируются оогонии, несущие по одной яйцеклетке. После слияния сперматозоида с яйцеклеткой образуется зигота, из которой развивается бесполое поколение — спорофит.

Бурые водоросли являются морскими обитателями, многие из них чаще встречаются в северных морях, нередко они образуют в морях и океанах огромные заросли. В северной части Атланти ческого океана, в Саргассовом море, в огромном количестве встре- чается род бурых водорослей — саргассум. Эти водоросли чаще всего находятся в плавающем состоянии благодаря наличию у них особых пузырей, наполненных воздухом.

Бурые водоросли считаются древней группой растений, у них обнаруживается более высокая степень дифференциации не только внешней, но и внутренней части таллома. Внешне они сходны с выс шими растениями, поэтому некоторые ботаники считают, что эти водоросли, возможно, дали начало высшим растениям.

Отдел бурые водоросли состоит из 4 порядков. Рассмотрим пред ставителей двух порядков: ламинариевые и фукусовые.

Порядок ламинариевые. Это очень крупные водоросли, достигающие иногда 60 м и больше. Таллом их сильно рассечен и, кроме того, имеет хорошо развитые разветвленные ризоиды, которыми водоросли прочно прикрепляются ко дну моря. Обитают ламинариевые в прибрежной полосе морей па глубине 5...10 м и часто образуют огромные заросли подводных «лесов».

К ламинариевым относятся род ламинария (включает 30 видов), род лессония (насчитывает 5 видов) и род макроцистис. Эти водоросли — многолетние растения, отличающиеся одно от другого строением таллома.

Отдел слизевики

Плазмодий образуется в результате слияния голых амебооб разных клеток слизевика и у некоторых видов слизевиков достигает размеров ладони человека. Он обычно окрашен в ярко-желтый цвет и обладает способностью очень медленно амебообразно пере двигаться (0,1 мм/мин). При передвижении плазмодий стремится скрыться от света и направиться к источнику влаги. Встречаются слизевики обычно в тенистых лесах; на гнилых растениях, между корой и древесиной, в трещинах пней, под опавшими листьями. Размножаются спорами.

Положение слизевиков в филогенетической системе неясно, по-видимому, они произошли от каких-то жгутиковых. Из этого отдела рассмотрим плазмодиофору.

Болезнь распространяется через почву и особенно быстро разви вается на кислых почвах.

В чем заключается феномен спирулины? Сотни ученых со всего мира провели тщательное изучение ее химического состава и биологического воздействия на организм животных и людей. С результатами этих исследований можно познакомиться благодаря трудам Хироши Накамуро (Япония), Кристофера Хилза и Роберта Хенрихсона (США).

Особенность спирулины заключается в том, что она основывается на фотосинтезе – процессе прямого усвоения энергии солнечного света, что типично для растительных форм жизни. В то же время биохимический состав клетки спирулины в определенной мере сходен с составом клеток животных. Сочетание в клетках микроводоросли свойств как растительных, так и животных организмов является еще одним фактором, определяющим высокую биологическую ценность спирулины.

Биомасса спирулины содержит абсолютно все вещества, которые необходимы человеку для нормальной жизнедеятельности. Ряд особых веществ – биопротекторов, биокорректоров и биостимуляторов – не встречается больше ни в одном продукте натурального происхождения. Это обусловливает поистине феноменальные свойства спирулины как продукта питания и лечебно-профилактического средства широкого спектра действия.

Синезеленые водоросли, к которым принадлежит спирулина, имеют клеточную стенку, состоящую из мукополимера муреина, легко перевариваемого пищеварительными соками человека, в отличие, например, от одноклеточной зеленой водоросли хлореллы, имеющей целлюлозную оболочку, разрушить которую может только микрофлора жвачных животных.

Мягкая клеточная стенка делает ее наиболее усвояемым продуктом в мире. Исследования показали, что спирулина не имеет себе равных из-за высочайшего качества протеина растительного происхождения, наибольшей усвояемости диетических элементов, насыщенности самыми необходимыми витаминами и минералами.

Содержание белка в спирулине (60–70 %) намного выше, чем в любом другом традиционном продукте питания. Для сравнения: в яйце содержится белка 47 %, в говядине – 18–21 %, в порошке сои – 37 %. К тому же белок спирулины содержит все необходимые (незаменимые) для нормальной жизнедеятельности организма человека аминокислоты, обеспечивающие нормальное развитие растущих клеток и жизненные потребности уже сформировавшихся и стареющих.

Спирулина содержит от 10 до 20 % сахаров, которые легко усваиваются с минимальным количеством инсулина. В спирулине содержится очень мало холестерола (32,5 мг/100 г), в то время как в яйце на то же количество белка его приходится 300 мг, поэтому регулярное потребление спирулины приводит к снижению в организме холестерина. Ее состав включает до 8 % жира, представленного важнейшими жирными кислотами (лауриновая, пальмитиновая, стеариновая, олеиновая, линолевая, ?-линоленовая, ?-линоленовая и др.). В частности, ?-линоленовая кислота представляет большую ценность при лечении импотенции у мужчин, фригидности, отсутствия либидо у женщин и т. д. В сочетании с витамином Е эти компоненты улучшают функцию органов воспроизводства, способствуют наступлению и нормальному течению беременности, а после родов и увеличению выработки молока Спирулина обогащена макро – и микроэлементами, необходимыми для нормального течения обменных процессов в организме. И, что особенно важно, в спирулине сконцентрированы в оптимальных соотношениях важнейшие витамины – А, В, В, В, В6 , В12 , РР, биотин, фолиевая кислота, пантотенат, С и Е.

Спирулина – самая богатая по содержанию бета-каротина, его в ней в 10 раз больше, чем в моркови. Бета-каротин – один из наиболее мощных антиоксидантов и иммуностимуляторов, предупреждающих развитие сердечно-сосудистых и онкологических заболеваний. При оптимальных условиях культивирования спирулина накапливает бета-каротин в количестве 3000 мкг/г и более, что многократно превышает его концентрацию в традиционных продуктах. Нормальный уровень бета-каротина в плазме крови человека (0,5–1,5 мкмоль/л) может быть обеспечен ежедневным дополнительным (помимо пищи) приемом 2–6 мг витамина в сутки. Такое количество бета-каротина содержится всего в 1–2 г спирулины. При этом лечебно-профилактическое действие бета-каротина спирулины в несколько раз превосходит синтетический бета-каротин, используемый в настоящее время медициной.

Спирулина содержит витаминов группы В гораздо больше, чем мясные продукты, бобовые и различные крупы, при кулинарной обработке которых до 40 % последнего разрушается. В 1 г сухой массы спирулины содержится: тиамина (B1 ) – 30–50 мкг, рибофлавина (B2 ) – 5,5–35 мкг, пиридоксина (В6 ) – 3–8 мкг, цианкоболамина (B12 ) – 1–3 мкг. Спирулина особенно богата витамином B12 (с учетом усвояемости 1 г спирулины равен 100 г вареного мяса). Именно высоким содержанием витамина В12 объясняется высокий положительный терапевтический эффект, отмеченный при приеме спирулины больными с нарушениями кроветворения (прежде всего с анемиями различной природы), липидного обмена (гиперхолестеринемией), жировым перерождением печени, полиневритами и невралгиями. Спирулина также содержит в своем составе фолиевую кислоту (витамин B9 ) (0,1–0,5 мкг/г), ниацин (витамин В3 ) (118 мкг/г), инозитол (витамин В) (350–640 мкг/г), биотин (витамин Н) (0,012–0,05 мкг/г), аскорбиновую кислоту (витамин С) (2120 мкг/г), ?-токоферол (витамин Е) (190 мкг/г). По содержанию витамина РР спирулина намного превосходит говяжью печень, почки, язык, мясо птицы и кролика.

Полезность витаминов спирулины – в их сбалансированном комплексе. Согласно современным представлениям природные сбалансированные комплексы антиоксидантов (бета-каротина, альфа-токоферола, фолиевой кислоты, железа, селена и др.) содержащиеся в растительной пище, какой является спирулина. несмотря на низкие концентрации (не сопоставимые с рекомендуемыми в настоящее время суточными потребностями) оказывают на организм человека более выраженное защитное действие, чем большие дозы отдельных синтетических витаминов или их смесей, которые далеко не всегда дают ощутимый положительный эффект, а иногда и наносят вред. Именно этим, по мнению многих исследователей, в значительной мере и определяются неоднократно подтвержденные иммуностимулирующие, радиопротекторные и противоопухолевые свойства спирулины.

Спирулина содержит практически весь необходимый человеку набор минеральных веществ. Причем они находятся в спирулине в легко усваиваемой форме. Содержание фосфора, кальция и магния в спирулине существенно выше (примерно в 2–3 раза), чем в растительных и животных продуктах, богатых этими элементами (горохе, арахисе, изюме, яблоках, апельсинах, моркови, рыбе, говядине и др.) Но самое главное состоит в том, что минеральные вещества, содержащиеся в растительных продуктах и вареном обработанном мясе (рыбе), усваиваются хуже, чем содержащиеся в спирулине. Железо, жизненно необходимое для кроветворной системы человека (входит в состав гемоглобина, эритроцитов, миоглобина мышц и ферментов), усваивается организмом на 60 % лучше, чем в других добавках, таких как сульфат железа. Прием 4 г спирулины в день обеспечивает быстрое увеличение гемоглобина в крови. Особого внимания заслуживает повышенное содержание в спирулине таких микроэлементов, как цинк, селен, хром, йод, железо, медь, марганец.

Спирулина содержит в своем составе три пигмента-красителя: каратиноиды, хлорофилл и фикоцианин, которые помогают организму синтезировать многие ферменты, необходимые для регулирования метаболизма организма. Наиболее важным из них для человека является сине-голубой пигмент фикоцианин. Исследования, проведенные японскими и американскими медиками, показывают, что фикоцианин укрепляет иммунную систему и повышает активность лимфатической системы организма. Основная ее функция – защитная, направленная на поддержание здоровыми органов и тканей организма и защита от инфекций и других заболеваний.

Хлорофилл спирулины имеет строение и химический состав, близкие к молекуле гема крови. В сочетании с комплексом содержащихся в спирулине веществ он способствует биосинтезу гемоглобина, что позволяет в короткий срок нормализовать функцию кроветворных органов.

Таким образом, спирулина, имеющая в своем составе полноценный белок, углеводы, жиры, микро – и макроэлементы, витамины, фикоцианин, бета-каротин, ?-линолевую кислоту и другие биологически активные компоненты, способна каждая в отдельности и тем более все вместе оказать мощное положительное воздействие на организм человека и способствовать нормализации имеющихся нарушений, если в этом имеется необходимость, или повысить защитные силы организма и, как следствие, его работоспособность и устойчивость к неблагоприятным факторам внешней среды.

Ламинария

Бурые водоросли являются прекрасным сырьем для производства целого ряда медицинских препаратов и биологически активных добавок к пище.

Особенностью состава бурых водорослей, к которым относится ламинария, является высокое содержание альгиновой кислоты и ее солей (13–54 % сухого остатка), которые у зеленых и красных водорослей отсутствуют. Кроме альгиновой кислоты, в состав ламинарии входят и другие полисахариды: фукоидан и ламинарин.

С фукоиданом связано сенсационное открытие, сделанное в Японии. Ученые обратили внимание на то, что на острове Окинава самый низкий уровень раковых заболеваний. Были проведены многочисленные исследования. Выяснилось, что жители острова Окинава едят бурые водоросли сырыми, а остальные японцы – вареными. Оказалось, что причина в полисахаридах фукоидане и ламинарине. При их попадании в организм человека раковые клетки начинают погибать. Но фукоидан распадается при кипячении. Фукоидан препятствует процессу слипания клеток, предотвращает метастазирование. Стимулируя фагоцитоз, альгинаты, фукоидан и ламинарин оказывают противоопухолевый эффект разрушая не только раковые клетки, но и метастазы на поздних стадиях рака. Фукоидан и ламинарин эффективны не только при самых разных формах рака, но и позволяют восстановить функции организма пациентов, прошедших курс интенсивной химио – и лучевой терапии. Процесс восстановления идет значительно быстрее, улучшается общее состояние организма, вновь вырастают выпавшие волосы, восстанавливается функция печени.

Еще одним свойством полисахаридов фукоидана и ламинарина являются профилактика и лечение сердечно-сосудистых заболеваний. Эти заболевания во многом зависят от баланса липидов, нарушение которого приводит к повышенной склонности к образованию атеросклеротических бляшек в сосудах. Полисахариды фукоидан и ламинарин позволяют исправить ситуацию, особенно когда болезнь еще не развилась. Ламинарин также оказывает гипотензивный эффект и проявляет антикоагулянтную активность, которая составляет 30 % от активности гепарина, предотвращает проявления лучевой болезни, защищает от разрушающего воздействия ионизирующего излучения.

К настоящему времени известно, что фукоидан является регулятором процессов метаболизма и иммунокорректором, действие которого основано на активации природных механизмов защиты от патогенных микроорганизмов. Полисахариды фукоидан и ламинарин стимулируют фагоцитоз. Клетки-фагоциты являются основными санитарами в организме, они захватывают и переваривают микроорганизмы, продукты их распада.

Но все-таки главным действующим веществом ламинарии является альгиновая кислота. Впервые альгиновая кислота была открыта в 1883 г. Стенфордом. Прикладное значение альгиновой кислоты и ее производных определяется ее структурой, формируемой в процессе природного биосинтеза в бурых водорослях различных регионов мирового океана. В настоящее время ряд исследователей утверждает, что это высокомолекулярный полисахарид, состоящий из Д-маннуроновой и L-гиалуроновой кислот. Их соотношение в альгинатах, добываемых в различных странах, заметно отличается, что в свою очередь определяет и отличие физико-химических свойств. Именно комплекс этих свойств у альгинатов, в частности способность образовывать вязкие водные растворы, даже пасты, гомогенизирующие и эмульсионные свойства, пленкообразующая способность и ряд других, послужил основанием для широкого использования этих веществ в различных отраслях промышленности, в том числе и фармацевтической.

В современной медицине существует три основных направления применения альгинатов:

1) в качестве вспомогательных химико-фармацевтических веществ для производства различных лекарственных форм медицинских препаратов;

2) в качестве медицинских изделий в виде марли, ваты, салфеток, губок и другого для местного гемостаза при наружных и внутриполостных кровотечениях;

3) как лекарственные средства и БАДы различной направленности действия.

Широкое использование альгинатов обусловлено их практической безвредностью, хорошей переносимостью.

Альгиновая кислота и ее соли обладают целым рядом полезных свойств, но в то же время их отличают и неповторимые, присущие только им качества. Внешне альгинаты представляют собой желеобразную субстанцию, по клеящей силе превосходящую крахмал в 14, а гуммиарабик в 37 раз. Это свойство позволило использовать их в различных отраслях промышленности в качестве загустителей и желеобразователей.

Альгиновая кислота и ее соли обладают рядом уникальных целебных свойств, часть из которых и обусловлена их желеобразной консистенцией. Свойство альгиновой кислоты и ее солей останавливать кровотечения оказалось полезным при лечении язвенных поражений желудочно-кишечного тракта.

Соли альгиновой кислоты при приеме внутрь обладают антацидными свойствами (снижают агрессивную повышенную кислотность желудочного сока), стимулируют заживление язвенных поражений слизистой желудка и кишечника. Попадая в желудочно-кишечный тракт, альгинаты взаимодействуют с соляной кислотой желудочного сока и образуют гель, который покрывает слизистую, предохраняя ее от дальнейшего воздействия соляной кислоты и пепсина, останавливая кровотечение.

Положительное влияние на желудочно-кишечный тракт и процессы пищеварения связано также со способностью альгинатов к выраженному сорбирующему действию. Они способны связывать и удалять из организма продукты распада углеводов, жиров и белков, соли тяжелых металлов и радионуклиды. Это также позволило использовать альгинаты в комплексном лечении дисбактериоза, нейтрализуя побочные продукты, мешающие развитию нормальной естественной флоры кишечника. Исследованиями было установлено, что альгинаты удерживают собственную микрофлору кишечника, подавляя деятельность патогенных бактерий, таких как стафилококк, грибы рода Candida и др. Альгинаты проявляют антимикробное действие даже в незначительных концентрациях.

Альгинаты способны усиливать ослабленную перистальтику кишечника и протоков желчного пузыря, что позволяет применять их при ослаблении двигательной активности кишечника (метеоризме и вздутии живота), а также при дискинезии желчевыводящих путей.

Альгинаты широко используются для поддержания и восстановления нарушенной иммунной системы, так как обладают уникальными иммуностимулирующими способностями. Прежде всего альгинаты стимулируют фагоцитоз. Стимуляция фагоцитарной защиты обеспечивает антимикробную, противогрибковую и противовирусную активность препаратов из ламинарии. Альгинаты способны сорбировать (связывать) избыточное количество особого класса иммуноглобулинов (Е), участвующих в развитии острых аллергических заболеваний и реакций. Гипоаллергенный эффект особенно присущ альгинату кальция, который благодаря содержанию ионов кальция предотвращает выброс биологически активных веществ (гистамина, серотонина, брадикинина и др.), вследствие этого аллергическое воспаление не развивается.

Альгинаты стимулируют синтез антител местной специфической защиты (иммуноглобулинов класса А). Это в свою очередь делает кожу и слизистые оболочки дыхательных путей и желудочно-кишечного тракта более устойчивыми к патогенному действию микробов.

Применяют альгинаты и местно для лечения пародонтита, эрозий шейки матки, язвенной болезни желудка и двенадцатиперстной кишки.

Хирурги широко используют для лечения ран, ожогов, трофических язв, пролежней саморассасывающиеся ранозаживляющие повязки, изготовленные на основе альгинатов. Альгинатные повязки обладают хорошими дренирующими свойствами, поглощают раневой экссудат, способствуя быстрейшему очищению раны, уменьшают интоксикацию организма. Повязки обладают кровоостанавливающим свойством и стимулируют процессы регенерации тканей.

Антисклеротический эффект ламинарии объясняется присутствием в ее составе антагониста холестерина – бетаситостерина. Он способствует растворению осевших на стенках сосудов холестериновых отложений. К тому же биологически активные компоненты водорослей активизируют ферментные системы человека, что тоже способствует очищению сосудов. Снижение содержания холестерина в крови в большой степени объясняется и наличием в ламинарии полиненасыщенных жирных кислот. В водорослях обнаружены гормоноподобные вещества антисклеротического действия. Слабительное действие связано со способностью порошка ламинарии сильно набухать и, увеличиваясь в объеме, вызывать раздражение рецепторов слизистой оболочки кишечника, что усиливает перистальтику. Обволакивающее действие альгиновой кислоты способствует задержанию всасывания воды в кишечнике, что приводит к нормализации стула. Благоприятное сочетание клетчатки и минеральных солей в морской капусте не только ликвидирует запоры, но и на длительное время регулирует нарушенную функцию органов пищеварения.

Пищевые продукты из ламинарии по содержанию и качественному составу белков и углеводов значительно уступают пищевым продуктам, приготовленным из наземных растений, однако они обладают ценными свойствами, которыми не обладает растительное пищевое сырье наземного происхождения. К таким свойствам относятся следующие:

1) способность поглощать большое количество воды и увеличиваться при этом в объеме;

3) более высокое, чем в наземных растениях, содержание разнообразных макро – и микроэлементов.

В связи с этим морские водоросли в пищевом рационе должны рассматриваться не как источник для покрытия энергетических затрат организма, а как диетический ингредиент.

Водоросли в большей степени, чем другие живые существа подводного царства, обладают способностью извлекать из морской воды и аккумулировать многочисленные элементы. Так, концентрация магния в морской капусте превышает таковую в морской воде в 9–10 раз, серы – в 17 раз, брома – в 13 раз. В 1 кг ламинарий содержится столько йода, сколько его растворено в 100 000 л морской воды.

По содержанию многих химических элементов водоросли значительно превосходят наземные растения. Так, бора в водорослях в 90 раз больше, чем в овсе, в 4–5 раз больше, чем в картофеле и свекле. Количество йода в ламинариях в несколько тысяч раз больше, чем в наземной флоре. Минеральные вещества водорослей в основном (75–85 %) представлены водорастворимыми солями калия и натрия (хлориды, сульфаты). В водорослях содержится довольно большое количество кальция: в 100 г морской капусты – 155 мг. В сухих водорослях содержится в среднем 0,43 % фосфора, тогда как в сушеном картофеле и сушеной моркови его почти вдвое меньше.

Водоросли в большом количестве аккумулируют не только различные микро – и макроэлементы, но также и многие витамины. В ламинарии содержится такое количество провитамина А, которое соответствует его содержанию в распространенных фруктах: яблоках, сливах, вишнях, апельсинах. По содержанию витамина В1 ламинария не уступает сухим дрожжам. В 100 г сухих бурых водорослей содержится до 10 мкг витамина В12 . Большой интерес представляют водоросли как источник витамина С в пищевой диете. В ламинарии содержится довольно большое количество этого витамина: в 100 г сухой ламинарии – от 15 до 240 мг, а в сырых водорослях – 30–47 мг. По содержанию этого витамина бурые водоросли не уступают апельсинам, ананасам, землянике, крыжовнику, зеленому луку, щавелю. Кроме вышеуказанных витаминов, в водорослях найдены и другие витамины, в частности витамины Д, К, РР (никотиновая кислота), пантотеновая и фолиевая кислоты.

Морские растения содержат колоссальное количество йода. Так, в 100 г сухой ламинарии содержание йода колеблется от 160 до 800 мг. Известно, что в бурых съедобных водорослях до 95 % йода находится в виде органических соединений, из них примерно 10 % связано с белком, что имеет немаловажное значение. Кроме этого, в морской капусте имеется некоторое количество моно – и дийодтирозина – неактивных гормональных веществ, содержащихся в ткани щитовидной железы, которые также являются органическими продуктами.

Таким образом, искусственно созданный продукт не может конкурировать с живой природой: в морской капусте не просто много йода – она содержит еще и биологически активные вещества, помогающие этот йод усвоить. Органические соединения йода ламинарии быстрее, чем эквивалентное количество йодистого натрия, способствуют нормализации функции щитовидной железы. И это можно объяснить не только йодом, но и содержанием в морских растениях важных для обменных процессов макро – и микроэлементов (молибден, медь, кобальт и др.) и витаминов.

Красная морская водоросль

Широко распространенные в дальневосточных морях красные водоросли, используемые с давних лет в пищевой и медицинской практике, содержат различные гидроколлоиды, в том числе и каррагинан. Каррагинаны, сульфатированные полисахариды, встречаются только в красных морских водорослях, не имеют аналогий среди других растительных полисахаридов и находят широкое применение как в фармацевтической, так и пищевой промышленности. Производственный интерес к каррагинанам обусловлен их способностью образовывать гели, увеличивать вязкость водных растворов, а также их разносторонней биологической активностью.

Известно несколько типов каррагинанов, которые условно можно разделить на так называемые желирующие и нежелирующие. В каждом растительном виде может присутствовать несколько типов каррагинанов. Кроме того, состав и количество экстрагируемого каррагинана зависят от места произрастания водоросли, фазы ее жизненного цикла и сезона. Практическое использование каррагинана в значительной мере определяется его физико-химическими свойствами. Структурные различия в каррагинанах существенно влияют на их биологическую активность. Каррагинаны проявляют высокую антикоагулирующую активность при низкой концентрации. Их используют в качестве энтеросорбента и радиопротектора. Имеются положительные результаты при использовании каррагинанов у больных атеросклерозом и язвой двенадцатиперстной кишки.

Полезные свойства каррагинанов открывают уникальную возможность создания лечебно-профилактических продуктов на их основе. Для нужд производства на основе каррагинана разработана рецептура различных кондитерских желе, которые могут быть использованы для диетического питания.

Все водоросли хорошо различаются по набору фотосинтезирующих пигментов. Такие группы в систематике растений имеют статус отделов.

Основным пигментом всех водорослей является зеленый пигмент хлорофилл. Известно четыре типа хлорофилла, которые различаются по своей структуре: хлорофилл a – присутствует у всех водорослей и высших растений; хлорофилл b – встречается у зеленых, харовых, евгленовых водорослей и у высших растений: растения, содержащие этот хлорофилл, всегда имеют ярко-зеленую окраску; хлорофилл c – встречается у гетероконтных водорослей; хлорофилл d – редкая форма, встречается у красных и синезеленых водорослей. Большинство фотосинтезирующих растений содержат два разных хлорофилла, одним из которых всегда является хлорофилл a. В некоторых случаях вместо второго хлорофилла присутствуют билипротеины . У синезеленых и красных водорослей встречаются два вида билипротеинов: фикоцианин – синий пигмент, фикоэритрин – красный пигмент.

Обязательными пигментами, входящими в фотосинтетические мембраны, являются желтые пигменты – каротиноиды . Они отличаются от хлорофиллов спектром поглощаемого света и, как полагают, выполняют защитную функцию, предохраняя молекулы хлорофилла от разрушительного воздействия молекулярного кислорода.

Кроме перечисленных пигментов у водорослей встречаются: фукоксантин – золотистый пигмент; ксантофилл – бурый пигмент.

Конец работы -

Эта тема принадлежит разделу:

Водоросли

Рыбохозяйственный университет.. институт биологии моря им а в жирмунского дво ран.. л л арбузова..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Клеточные покровы
Клеточные покровы обеспечивают устойчивость внутреннего содержимого клеток к внешним воздействиям и придают клеткам определенную форму. Покровы проницаемы для воды и растворенных в ней низкомолекул

Жгутики
Монадные вегетативные клетки и монадные стадии в жизненном цикле (зооспоры и гаметы) водорослей снабжены жгутиками – длинными и довольно толстыми выростами клеток, снаружи покрытыми плазмалеммой. И

Митохондрии
Митохондрии встречаются в клетках эукариотных водорослей. Форма и строение митохондрий в клетках водорослей более разнообразны по сравнению с митохондриями высших растений. Они могут быть округлыми

Пластиды
Пигменты в клетках эукариотных водорослей находятся в пластидах, как и у всех растений. У водорослей встречается два типа пластид: окрашенные хлоропласты (хроматофоры) и бесцветные лейкопласты (ами

Ядро и митотический аппарат
Ядро водорослей имеет типичную для эукариотов структуру. Количество ядер в клетке может варьировать от одного до нескольких. Снаружи ядро покрыто оболочкой, состоящей из двух мембран, наружная мемб

Монадный (жгутиковый) тип структуры таллома
Наиболее характерным признаком, определяющим этот тип структуры, является наличие жгутиков, с помощью которых монадные организмы активно передвигаются в водной среде (рис. 9, А). Подвижные ж

Ризоподиальный (амебоидный) тип структуры
Наибоее существенные признаки амебоидого типа структуры – отсутствие прочных клеточных покровов и способность к амебоидному движению, с помощью временно образующихся на поверхности клетки ци

Пальмеллоидный (гемимонадный) тип структуры
Характерным для этого типа структуры является сочетание неподвижного растительного образа жизни с наличием клеточных органелл, свойственных монадным организмам: сократительные вакуоли, стигма, жгут

Коккоидный тип структуры
Этот тип объединяет одноклеточные и колониальные водоросли, неподвижные в вегетативном состоянии. Клетки коккоидного типа одеты оболочкой и имеют протопласт растительного типа (тонопласт без сократ

Трихальный (нитчатый) тип структуры
Характерной особенностью нитчатого типа структуры является нитевидное расположение неподвижных клеток, которые образуются вегетативным путем в результате клеточного деления, происходящего преимущес

Гетеротрихальный (разнонитчатый) тип структуры
Разнонитчатый тип возник на базе нитчатого типа. Разнонитчатое слоевище состоит большей частью из горизонтальных, стелящихся по субстрату нитей, выполняющих функцию прикрепления, и вертикальных, по

Паренхиматозный (тканевой) тип структуры
Одно из направлений эволюции разнонитчатого слоевища было связано с возникновением паренхиматозных слоевищ. Способность к неограниченному росту и делению клеток в разных направлениях привела к обра

Сифональный тип структуры
Сифональный (неклеточный) тип структуры характеризуется отсутствием внутри слоевища, достигающего сравнительно крупных, обычно макроскопических размеров и определенной степени дифференцировки, клет

Сифонокладальный тип структуры
Основным признаком сифонокладального типа структуры является способность к образованию из первичного неклеточного слоевища сложно устроенных слоевищ, состоящих из первично многоядерных сегментов. В

Бесполое размножение
Бесполое размножение водорослей осуществляется с помощью специализированных клеток – спор. Спорообразование обычно сопровождается делением протопласта на части и выходом продуктов деления из

Простое деление
Этот способ размножения встречается только у одноклеточных форм водорослей. Наиболее просто происходит деление у клеток, имеющих амебоидный тип строения тела. Деление амебоидных форм

Фрагментация
Фрагментация присуща всем группам многоклеточных водорослей и проявляется в разных формах: образование гормогониев, регенерация оторвавшихся частей слоевища, спонтанное отпадание ветвей, отрастание

Размножение побегами, столонами, выводковыми почками, клубеньками, акинетами
У тканевых форм зеленых, бурых и красных водорослей вегетативное размножение приобретает свою законченную форму, которая мало отличается от вегетативного размножения высших растений. Сохраняя спосо

Половое размножение
Половое размножение у водорослей связано с половым процессом, который заключается в слиянии двух клеток, в результате чего образуется зигота, вырастающая в новую особь или дающая зооспоры.

Смена ядерных фаз
При половом процессе в результате слияния гамет и их ядер происходит удвоение числа хромосом в ядре. На определенном этапе цикла развития, при мейозе, происходит редукция числа хромосом, в результа

Эндофиты/ эндозоиты, или эндосимбионты
Эндосимбионты, или внутриклеточные симбионты – водоросли, живущие в тканях или клетках других организмов (беспозвоночных животных или водорослей). Они образуют своеобразную экологическую гру

Отдел синезеленые водоросли (цианобактерии) – cyanophyta
В названии отдела (от греч. cyanos – синий) отражена характерная особенность этих водорослей – окраска таллома, связанная с относительно высоким содержанием синего пигмента фикоцианина. Циан

Порядок– Chroococcales
Встречаются в виде одноклеточных "простых" индивидов или чаще образуют слизистые колонии. При делении клеток в двух плоскостях возникают однослойные пластинчатые колонии. Деление в трех п

Отдел красные водоросли– rhodophyta
Название отдела происходит от греческого слова rhodon ("родон") –розовый. Окраска красных водорослей обусловлена различным сочетанием пигментов. Она бывает от серого и фиолетового

Порядок Бангиевые–Bangiales
Род Порфира имеет слоевище в виде тонкой блестящей пластины с ровными или складчатыми краями, состоящей из одного-двух слоев плотно соединенных клеток. Основание пластины обычно переходит в

Порядок Родимениевые – Rhodymeniales
Род Спарлингия (Родимения) – плоские пластины до 45 см высоты, листовидной и клиновидной формы, расширенные и пальчато рассеченные вверху, от светло-розового или светло-оранжевого до

Порядок Кораллиновые – Corallinales
Род Кораллина – членистые вееровидно разветвленные кустики до 10 см высоты, разветвленные, известковые, от розово-сиреневого до почти белого цвета. Размножается бесполым и половым путем. Спо

Порядок Гигартиновые – Gigartinales
Род Хондрус – плотные кожистые хрящеватые кустики до 20 см высоты, 3–4-кратно разветвленные, светло-желтого, светло-розового, пурпурно-темно-красного цвета. Растет в нижней части литорали и

Порядок Церамиевые – Ceramiales
Род Церамиум – нежные пушистые членистые кустики до 10 см высоты, дихотомически или поочередно разветвленные, темно-желтого с розоватым оттенком цвета. Ветвление двух-четырех порядков, конеч

Отдел диатомовые водоросли – bacillariophyta
Отдел называется Диатомовые водоросли (от греч. di - два, tome - разрез, рассечение), или Бациллярии (bacillum – палочка). Включает одноклеточные одиночные или колониальные орг

Отдел гетероконтные (разножгутиковые) водоросли – heterokontophyta
У всех гетероконтов похоже устроен жгутиковый аппарат. Имеется 2 жгутика, причем на одном из них есть очень характерные трубчатые трехчленные перистые выросты, или волоски – мастигонемы. Именно нал

Систематика
Ископаемые кокколиты известны из мезозойских отложений и были обильны на протяжении больней части юрского и в меловом периодах. Максимального разнообразия примнезиофитовые достигли в позднем мелу,

Отдел криптофитовые водоросли (криптомонады) – cryptophyta
Отдел назван по типовому роду Криптомонас (от греч. kryptos – скрытый, monas - особь). Включает одноклеточные, подвижные, монадные организмы. Клетки криптофитов

А б в г д
Рис. 53. Внешний вид криптофитовых водорослей (по: Г.А. Белякова и др., 2006): А – Родомонас, Б – Хроомонас, В – Криптомонас, Г – Хиломонас, Д – Гониомонас может фор

Отдел зеленые водоросли – chlorophyta
Зеленые водоросли - самый обширный из всех отделов водорослей, насчитывающий по разным оценкам от 4 до 13 - 20 тысяч видов. Все они имеют зеленый цвет слоевищ, что обусловлено преобладанием в хлоро

Порядок Улотриксовые – Ulotrichales
Род Улотрикс (рис. 54). Виды Улотрикса обитают чаще в пресных, реже в морских, солоноватых водоемах и в почве. Они прикрепляются к подводным предметам, формируя ярко-зеленые кустики р

Порядок Бриопсидовые– Bryopsidales
Большинство видов встречается в пресных и солоноватых водоемах. Некоторые из них растут на почве, на камнях, песке и иногда на солончаках. Род Бриопсис – нитевидные кустики до 6-8 с

Порядок Вольвоксовые - Volvocales
Род Хламидомонада (рис. 57)включает свыше 500 видов одноклеточных водорослей, которые обитают в пресных, мелких, хорошо прогреваемых и загрязненных водоемах: прудах, лужах, канавах и т.п. Пр

Отдел Харофитовые (Харовые) – Charophyta
Харофитовые – линия пресноводных зеленых водорослей, приведшая к высшим растениям. Это формы преимущественно с нитчатым талломом. Нередко таллом вертикальный, расчлененный и несет о

Отдел динофитовые (динофлагеллаты) – dinophyta
1. Название отдела происходит от греч. dineo - вращаться. Объединяет преимущественно одноклеточные монадные, реже коккоидные, амебоидные или пальмеллоидные, иногда колониальн

Отдел euglenozoa – евгленовые
Отдел назва по типовому роду - Euglena (от греч. еu – хорошо развитый, glene – зрачок, глаз). Объединяет одиночных монадных или амебоидных представителей. Изредка встречаются к

Словарь терминов
Автогамия – половое размножение, при котором сливаются два сестринских гаплоидных ядра в общей цитоплазме. Автоспора – структура бесполого размножения, представляющая собой