Гены имеющие одинаковую локализацию в гомологичных хромосомах. Аннотированных учебных элементов. Aллель - вариант (состояние) гена, локализованного в определенном локусе (месте) хромосомы. Рецессивным называется признак…

Доминированием называется… А) совместное наследование признаков; Б) зависимость проявления признака от пола; В) наличие

у гибридов признака одного из родителей;

Г) степень выраженности признака.

Аллельными называются…

А) гены, локализованные в одной хромосоме;

Б) гены, локализованные в разных хромосомах;

В) гены, локализованные в одних и тех же локусах гомологичных хромосом;

Г) гены, локализованные в разных локусах гомологичных хромосом.

Аллель – это…

А) место гена в хромосоме;

Б) число генов в хромосоме;

В) форма существования гена;

Г) одна из хромосом гомологичной пары.

Какое количество аллелей одного гена в норме содержится в соматической клетке?

А) 1; Б) 2; В) 4; Г) 12.

Гомозиготной называется особь, …

А) имеющая две одинаковых аллели одного гена;

Б) имеющая две разные аллели одного гена;

В) имеющая большое количество аллелей одного гена;

Г) любая особь.

Аа х Аа является гетерозиготной?

А) ½; Б) 1/3; В) ¼; Г) ¾.

Какая часть гибридов от скрещивания Аа х Аа является гомозиготной?

А) ½; Б) 1/3; В) ¼; Г) ¾.

Какая часть гибридов от скрещивания Аа х Аа является гомозиготной по рецессивному признаку?

А) ½; Б) 1/3; В) ¼; Г) ¾.

Какая часть гибридов от скрещивания Аа х Аа является гомозиготной по доминантному признаку?

А) ½; Б) 1/3; В) ¼; Г) ¾.

Каким будет расщепление по генотипу гибридов от скрещивания двух гетерозиготных растений? Каким будет расщепление по генотипу гибридов от скрещивания двух гомозиготных растений?

А) 1:1; Б) 1:2:1; В) 1:3; Г) нет расщепления.

Ген, отвечающий за свертываемость крови, и ген, отвечающий за наличие веснушек. Являются ли эти гены аллельными?

А) да; Б) нет.

Сколько типов гамет образует гомозиготная особь?

А) 1; Б) 2; В) 3; Г) 4.

Сколько типов гамет образует гетерозиготная особь?

А) 1; Б) 2; В) 3; Г) 4.

Какое количество аллелей одного гена в норме содержится в гамете человека?

А) 1; Б) 2; В) 3; Г) 6.

Каким будет расщепление по фенотипу гибридов от скрещивания двух гетерозиготных растений?

А) 1:1; Б) 1:2:1; В) 1:3; Г) нет расщепления.

22. Аллелизм – это:

А) явление парности генов

Б) явление расщепления признаков у гибридов

В) преобладание у гибридов признака одного из родителей

23. Рецессивным называется признак…

А) любой признак организма

Б) признак, проявляющийся у гетерозиготных особей

В) признак, не проявляющийся у гетерозиготных особей

Г) признак, которым одна особь отличается от другой

24. Каким будет расщепление по фенотипу гибридов от скрещивания двух гомозиготных особей?

А) 1:1; Б) 1:2:1; В) 1:3; Г) расщепления нет

25. Какая часть гибридов от скрещивания

аа х аа является гетерозиготной?

А) 0 %; Б) 25 %; В) 5 %; Г) 100 %.

А.1. Гаметы – специализированные клетки, с помощью которых осуществляется 1) половое размножение 3) вегетативное размножение 2) прорастание семян 4)

рост вегетативных органов

А.2. Какая болезнь человека – результат генной мутации? 1) грипп 2) малярия 3) серповидная клеточная анемия 4) дизентерия

А.3. Особей, образующих гаметы разного сорта, в потомстве которых происходит расщепление, называют 1) аллельными 2) гетерозиготными 3) неаллельными 4) гомозиготными

А.4. В соматических клетках здорового человека находится 1) 32 хромосомы 2) 46 хромосом 3) 21 хромосома 4) 23 хромосомы

А.5. Два гена наследуются сцеплено, если они располагаются в 1) гомологичных хромосомах 3) негомологичных хромосомах 2) половых хромосомах 4) одной хромосоме

А.6. Для определения генотипа особи проводят скрещивание 1) дигибридное 2) анализирующее 3) промежуточное 4) полигибридное

А.7. Соотношение по фенотипу 3:1 соответствует 1) закону Моргана 3) закону расщепления 2) сцепленного с полом наследования 4) закону единообразия

А.8. Синдром Дауна вызван 1) моносомией по 21 хромосоме 3) трисомией по Х-хромосоме 2) трисомией по 21 хромосоме 4) моносомией по Х-хромосоме

А.9. Благодаря конъюгации и кроссинговеру при образовании гамет происходит 1) уменьшение числа хромосом вдвое \ 2) увеличение числа хромосом вдвое 3) обмен генетической информации между гомологичными хромосомами 4) увеличение числа гамет

А.10. При скрещивании кроликов с генотипами ААвв и ааВВ получится потомство с генотипом 1) АаВВ 2) ААВв 3) ААВВ 4) АаВв

А.11. При скрещивании двух длинношерстных морских свинок получили 25% короткошерстных особей. Это значит, что родительские особи являлись 1) гомозиготными по доминантному гену 2) гомозиготными по рецессивному гену 3) одна особь гомозиготной по доминантному гену, а другая гетерозиготной 4) гетерозиготными

А.12. Хромосомный набор половой клетки женщины содержит 1) две ХХ - хромосомы 3) 46 хромосом и две ХХ - хромосомы 2) 22 аутосомы и одну Х - хромосому 4) 23 аутосомы и одну Х - хромосому

А.13. При скрещивании черной морской свинки (Аа) с черным самцом (Аа) в поколении F1 получится 1) 50% белых и 50% черных особей 3) 75% белых и 25% черных особей 2) 25% белых и 75% черных особей 4) 100% - черных особей

А.14. У человека гетерогаметным является пол 1) мужской 3) и мужской и женский 2) в одних случаях – мужской, в других - женский 4) женский

А.15. Какова вероятность рождения детей с веснушками у супружеской пары, если генотип женщины – Аа, а мужчины – аа (А- наличие веснушек)? 1) 100% 2) 50% 3) 25% 4) 75%

А.16. Сколько типов гамет может образоваться в результате нормального гаметогенеза у особи с генотипом ААВв 1) один 2) три 3) два 4) четыре

А.17. Определите генотип родительских растений гороха, если при скрещивании оказалось 50% растений гороха с желтыми и 50% - с зелеными семенами 1) Аа х Аа 2) АА х АА 3) АА х аа 4) Аа х аа

А.18. Какова вероятность рождения кареглазого ребенка у голубоглазой матери и гетерозиготного по данному признаку кареглазого отца? 1) 25% 2) 50% 3) 100% 4) 75%

А.19. Преобладающий ген, обозначающийся заглавной буквой, называется 1) рецессивный 2) аллельный 3) доминантный 4) неаллельный

А.20. Парные гены, расположенные в гомологичных хромосомах и определяющие окраску цветов гороха, называют 1) сцепленными 2) доминантными 3) рецессивными 4) аллельными

В.1. Вставьте в текст «Наследственность» пропущенные термины из предложенного перечня, используя для этого цифровые обозначения. Запишите в таблицу получившуюся последовательность цифр. Наследственность – это свойство организмов передавать при размножении признаки потомству из поколения в поколение. Элементарная единица наследственного материала – это ___________(А). Его основой является ___________(Б). Совокупность всего наследственного материала организма – это________(В), а совокупность его внешних и внутренних признаков образуют его ___________(Г).

ПЕРЕЧЕНЬ ТЕРМИНОВ 1) хромосома 2) генофонд 3)АТФ 4) фенотип 5) ген 6) генотип 7) мутаген 8) ДНК А Б В Г

С.1. При скрещивании самки дрозофилы, дигетерозиготной по генам А и В, с рецессивным самцом получено следующее расщепление по фенотипу: 47:3:3:47. Определитерастояние между генами А и В

1. Закономерности сцепленного наследования описывают: г) наследование неаллельных генов, расположенных в разных хромосомах

в) наследование неаллельных генов, расположенных в одной хромосоме
б) поведение хромосом в мейозе
а) наследование аллельных генов

2. Сколько типов гамет образует зигота СсВв, если гены С (с) и В (в) наследуются сцеплено:

а) один
в) три
б) два
г) четыре

3. Частота перекрёста хромосом зависит от:
г) количества хромосом в клетке
б) доминантности или рецессивности генов
в) расстояния между генами
а) количества генов в хромосоме

4. Какие новые гаметы могут появиться у родителей с генотипами ВСIIbс, если между некоторой частью генов произойдёт кроссинговер:

а) BC bc
г) Bc bC
в) BB bb
б) Bb Cc

5. Явление сцепленного наследования получило название

гипотезы чистоты гамет
в) кроссинговера
г) закона Моргана
а) третьего закона Менделя

6. Сколько хромосом отвечает за наследование пола у собак, если у них диплоидный набор хромосом равен78:

б) 18
а) 39
г) 78
в) 2

1).Генотип организма-это: а) проявляющиеся внешние и внутренние признаки организма б) наследственные признаки организма в) способность организма к

изменениям г) передача признака от поколения к поколению 2)Заслуга Г. Менделя заключается в выявлении: а) распределения хромосом по гаметам в процессе мейоза б) закономерностей наследования родительских признаков в) изучение сцепленного наследования г) выявлении взаимосвязи генетики и эволюции 3)Гибридологический метод Г. Менделя основан на: а) межвидовом скрещивании растений гороха б) выращивании растений в различных условиях в) скрещивании разных сортов гороха, отличающихся по определённым признакам г) цитологическом анализе хромосомного набора. 4).Анализирующее скрещивание проводят для: а) выявление доминантного аллеля б) того, чтобы выяснить, какой аллель рецессивен в) выведения чистой линии г) обнаружения гетерозиготности организма по определённому признаку. 5)Значение кроссинговера заключается в: а) независимом распределении генов по гаметам б) сохранении диплоидного набора хромосом в) создании новых наследственных комбинаций г) поддержании постоянства генотипов организма 6)Различия в размерах листьев одного дерева-это пример изменчивости: а) генотипической б) модификационной в) мутационной г) комбинативной. 6) А) Мутации:__________________________________________________________________ Б) Модификации:______________________________________________________________ 1) пределы изменчивости укладываются в норму реакции; 2) происходят резкие, скачкообразные изменения в генотипе; 3) происходят изменения под влиянием среды; 4) изменяется степень выраженности качественных признаков; 5) происходит изменение числа генов в хромосоме; 6) появляется в сходных условиях среды у генетически близких организмов, т. е. имеет групповой характер. 7). А) Соматические мутации:___________________________________________________________ Б) Генеративные мутации:____________________________________________________________ 1) не наследуются; 2) возникают в гаметах; 3) возникают в клетках тела; 4) наследуются; 5) имеют эволюционное значение; 6) не имеют эволюционного значения. 8)Выбери три правильных утверждения. Закон независимого наследования признаков соблюдается при условиях: 1) один ген отвечает за один признак; 2) один ген отвечает за несколько признаков; 3) гибриды первого поколения должны быть гомозиготными; 4) гибриды первого поколения должны быть гетерозиготными; 5) изучаемые гены должны распологаться в разных парах гомологичных хромосом; 6) изучаемые гены могут распологаться в одной паре гомологичных хромосом.

Прежде чем рассматривать вопросы взаимодействия генов необходимо ознакомиться с основными терминами и определениями, используемыми при изучении данного вопроса. Нам уже известно, что наследственные признаки обусловлены генами.

Гены – отдельные участки ДНК хромосом, ответственные за синтез одного белка.

Локус – место расположения гена на хромосоме.

В каждой паре гомологичных хромосом содержатся два родственных гена, которые отвечают за развитие одного признака

Локусы родственных генов расположены в одинаковых местах гомологичныххромосом

Аллель – один ген из пары, находящийся в сходном локусе гомологичных хромосом и контролирующий развитие альтернативных признаков. Аллелем называется также форма состояния гена.

Гомозиготные или чистые организмы – имеющие в одном и том же локусе гомологичных хромосом одинаковые по характеру действия гены (АА, аа, ВВ, вв).

Гетерозиготные или гибридные организмы – имеющие в одном и том же локусе гомологичных хромосом разные по характеру действия гены (Аа, Вв).

Решетка Пеннета – схематическое отображение процесса скрещивания.

Плейотропия – множественное действие гена, когда один ген ответственен за ряд фенотипических эффектов.

Полигенная детерминация – совместное действие нескольких генов на один признак.

Установленные Г. Менделем закономерности независимого расщепления признаковв потомстве гибридов распространяются на все случаи, когда каждый отдельный ген определяет развитие одного наследственного признака. Наряду с этим накоплены многочисленные факты, указывающие на сложные взаимодействия генов. Выяснилось, что один и тот же ген может влиять на несколько различных признаков и, наоборот, один и тот же наследственный признак развивается под влиянием многих генов. Известны два типа взаимодействия генов: аллельное и неаллельное.

Известны три основные формы взаимодействия между аллеломорфными генами: полное доминирование; неполное доминирование; и независимое проявление.

Полное доминирование наблюдается когда закономерности наследования подчиняются законам Менделя, когда в фенотипе гетерозигот присутствует продукт одного гена. При перекрестном опылении двух гомозиготных особей с генотипом АА и аа в первом гибридном поколении все растения по фенотипу будут одинаковы, а по генотипу будут гетерозиготными Аа.

Неполное доминирование – при котором фенотип гетерозигот имеет среднее значение между доминантными и рецессивными гомозиготами.

Простейший пример аллельного взаимодействия генов - неполное доминирование при скрещивании белых и красных цветков у львиного зева и получение в результате розовых цветков. Во втором гибридном поколении идет расщепление: одно красноцветковое растение, два с розовыми цветками и одно с белыми цветками. При этом наблюдается полное соответствие между фенотипом и генотипом - гомозиготы АА имеют красные цветки, гетерозиготы Аа - розовые и гомозиготы аа - белые. (составить решетку Пеннета).

Кодоминирование взаимодействие аллельных генов, при котором у гетерозигот в фенотипе присутствует продукт обоих генов.

При кодоминировании у гетерозиготных организмов каждый из аллеломорфных генов вызывает формирование контролируемого им признака независимо от того, какой из других аллеломорфных ему сопутствует. Примером кодоминирования является наследования у человека группы крови систем АВО. Группа крови контролируется серией множественных аллелей одного гена. Три аллели формируют шесть генотипов ОО – первая, АА или АО – вторая, ВВ или ВО – третья, АВ – четвертая группа крови.

Взаимодействие неаллеломорфных генов:

Гены расположенные в разных локусах и ответственные за проявление одного гена называются неаллельными.

Известны четыре формы взаимодействия: 1) комплектарность , при которой соответствующий признак развивается только в присутствии двух определенных неаллеломорфных генов; 2) эпистаз , при котором один из генов полностью подавляет действие другого неаллеломорфного гена; 3) полимерия, при которой неаллеломорфные гены действуют на формирование одного и того же признака и вызывают примерно одинаковые его изменения; 4) модификация, при которой одни гены видоизменяют действие других, подавляя, интенсифицируя или ослабляя их.

Комплементарные гены – обуславливающие при совместном сочетании новое фенотипическое проявление признака. Расщепление – 9:3:3:1, 9:7, 9:3:4, 9:6:1

9:3:3:1 – каждый доминантный ген имеет самостоятельное фенотипическое проявление, сочетание в генотипе этих двух генов обуславливает новое фенотипическое проявление, а их отсутствие – не дает развитие признака. Например – ген А обуславливает развитие голубой окраски оперения волнистых попугайчиков, ген В – желтой, а попугайчики с генотипом А_В_ – имеют зеленую окраску, а с генотипом ааbb – белую

9:7 – доминантные и рецессивные аллели комплементарных генов не имеют самостоятельного фенотипического проявления. Например, пурпурная окраска венчика цветка у душистого горошка развивается только при совместном сочетании в генотипе доминантных генов А и В, во всех остальных случаях окраска отсутствует, и венчик оказывается белым

9:3:4 – доминантные и рецессивные аллели комплементарных генов имеют самостоятельное фенотипическое проявление. Например окраска у кроликов определяется двумя комплементарными генами: А – наличие окраски, а – отсутствие, В – черная окраска, b – голубая окраска

9:6:1 – сочетание доминантных аллелей комплементарных генов обеспечивает формирование одного признака, сочетание рецессивных аллелей этих генов – другого, а наличие в генотипе только одного из доминантных генов – третьего. Например, тыквы с генотипом А_В_ имеют дисковидную форму плода, с генотипом ааbb – удлиненную, а с генотипом А_bb или ааВ_ - сферическую

Эпистаз взаимодействие неаллельных генов, при котором один из них подавляет действие другого. Ген, подавляющий действие другого неаллельного гена, называется супрессором или ингибитором, и обозначается I или S. Подавляемый ген называется гипостатичным. Эпистаз может быть доминантным и рецессивным.

Доминантным эпистазом называют подавление действия гена доминантной аллелью другого гена.

Расщепление: 13:3 – наблюдается в том случае, если доминантная аллель эпистатического гена не имеет своего фенотипического проявления, а лишь подавляет действие другого гена, в то время как его рецессивная аллель не влияет на проявление признака. Например, у некоторых пород кур наличие доминантного эпистатического гена подавляет развитие окраски оперения, при его отсутствии куры окрашены

12:3:1 – наблюдается в том случае, если гомозиготная по рецессивным признакам особь имеет особый фенотип. Например, от скрещивания двух гетерозиготных собак щенки с генотипом I_аа имеют белую окраску, а с генотипом iiА_ – черную, а с генотипом iiаа – коричневую

Взаимодействие неаллельных генов, при котором рецессивная аллель эпистатического гена в гомозиготном состоянии подавляет действие другого гена называется рецессивным эпистазом. При одинарном рецессивном эпистазе рецессивная аллель одного гена подавляет действие другого (аа подавляет В_). При двойном – рецессивная аллель каждого гена в гомозиготном состоянии подавляет действие доминантной аллели (аа подавляет В_, bb подавляет А_).Расщепление 9:3:4 или 9:7

Полимерия – взаимодействие неаллельных генов, однозначно влияющих на развитие одного и того же признака.

Такие гены называются полимерными или множественными и обозначаются одинаковыми буквами с соответствующими индексом (А1,А2,А3). Чаще всего полимерные гены контролируют количественные признаки (высота, масса, и т.д.)

Полимерия может быть кумулятивной (суммирующей, аддитивной) и некумулятивной

При кумулятивной полимерии степень проявления признака зависит от числа доминантных аллелей соответствующих полимерных генов. Например, чем больше доминантных аллелей генов, отвечающих за окраску кожи, содержится в генотипе человека, тем его кожа темнее

При некумулятивной полимерии степень развития признака зависит не от количества доминантных аллелей, а лишь от их наличия в генотипе. Например, куры с генотипом а1,а2,а3 имеют неоперенные ноги, во всех остальных случаях – ноги оперены

Модифицирующие гены - гены, усиливающие или ослабляющие действие других генов. Сами гены-модификаторы собственного проявления не имеют. Теоретически любой ген, взаимодействуя с остальными, должен модифицировать проявление другого гена. Однако существуют группы генов, которые отчетливо показывают свое модифицирующее действие на проявление несколько генов. У таких генов-модификаторов часто не обнаруживается их самостоятельное действие на особь. Об их существовании мы узнаем по их влиянию на другие гены. По типу своего действия гены модификаторы представлены двумя категориями: 1) гены, усиливающие проявление признака, детерминируемого другим геном; 2) гены, ослабляющие действие другого гена.

Сцепленное наследование.

Третий закон Менделя - правило независимого наследования имеет существенное ограничение. Он действителен только в тех случаях, когда гены локализованы в разных хромосомах. Когда же неаллеломорфные гены располагаются в одной хромосоме в линейном порядке, независимого расщепления не наблюдается, а наблюдается совместное наследование генов, ограничивающее их свободное комбинирование, Т. Морган назвал это явление сцеплением генов или сцепленным наследованием. Если по теории Менделя при скрещивании АВ и ав получается гибрид АаВв, образующий четыре сорта гамет АВ, Ав, Ва, ва. В соответствии с этим в анализирующем скрещивании осуществляется расщепление 1:1:1:1 т.е. по 25 %. Однако по мере накопления фактов наблюдается отклонения от такого расщепления. В отдельных случаях новые комбинации Ав и Ва совсем отсутствовали - наблюдалось полное сцепление между генами исходных форм, которое проявлялось в равных количествах - по 50 %. Гены чаще наследовались в исходном состоянии (были сцеплены).

Каждый организм имеет огромное количество признаков, а число хромосом невелико. Следовательно, одна хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков.

Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался выдающийся американский генетик Т.Морган.

Явление совместного наследования признаков называют сцепленным . Материальной основой сцепления генов является хромосома. Гены, локализованные в одной хромосоме, наследуются совместно и образуют одну группу сцепления. Количество групп сцепления равно гаплпоидному набору хромосом. Явление совместного наследования генов, локализованных в одной хромосоме, называют сцепленным наследованием. Сцепленное наследование генов, локализованных в одной хромосоме, называют законом Моргана.

Различают два варианта локализации доминантных и рецессивных аллелей генов, относящихся к одной группе сцепления:

Цис-положение , при котором доминантные аллели находятся в одной из пары гомологичных хромосом, а рецессивные – в другой.

Транс-положение , при котором доминантные и рецессивные аллели гена находятся в разных гомологичных хромосомах.

Гены в хромосомах имеют разную силу сцепления. Сцепление может быть полным – если гены, относящиеся к одной группе сцепления, всегда наследуются вместе; неполным, если между генами, относящимися к одной группе сцепления, возможна рекомбинация.

Исследования Т. Моргана показали, что в гомологичной паре хромосом частично происходит обмен генами. Процесс обмена был назван кроссинговером. Кроссинговер способствует новому сочетанию генов, находящихся в гомологичных хромосомах и тем самым увеличивает роль комбинативной изменчивости в эволюции. Изучение явления кроссинговера, нарушающего сцепление генов, утвердило представление о строго фиксированном расположении генов вдоль хромосом. Принцип линейного расположения известен как второй закон Т.Моргана.

Сцепление генов может нарушаться в процессе кроссинговера ; это приводит к образованию рекомбинантных хромосом. В зависимости от особенностей образования гамет, различают:

кроссоверные гаметы – гаметы с хромосомами, претерпевшими кроссинговер;

некроссоверные гаметы – гаметы с хромосомами, образованными без кроссинговера.

При сцепленном наследовании признаков, гены которых локализованы в одной хромосоме, соотношение фенотирических классов потомства, полученного от скрещивания, часто отличается от классического менделеевского. Это связано с тем, что часть гамет родительских особей является кроссоверной, а часть – некроссоверной.

Вероятность возникновения перекреста между генами зависит от их расположения в хромосоме: чем дальше друг от друга расположены гены, тем выше вероятность перекреста между ними. За единицу расстояния между генами, находящимися в одной хромосоме, принят 1 % кроссинговера. Его величина зависит от силы сцепления между генами и соответствует проценту рекомбинантных особей (особей, образованных с участием кроссоверных гамет) от общего числа потомков, полученных при скрещивании. В честь Т.Моргана единица расстояния между генами названа морганидой.

Процент кроссинговера между генами вычисляют по формуле:

Х = (а+в) х 100

П

где Х – процент кроссинговера, а – число кроссоверных особей одного класса, в – число кроссоверных особей другого класса, п – общее число особей, полученных от анализирующего скрещивания.

Величина кроссинговера не превышает 50 % , если же она выше, то наблюдается свободное комбинирование между парами аллелей, не отличимое от независимого наследования.

Согласно хромосомной теории наследственности, гены в хромосомах располагаются линейно. Генетическая карта хромосомы – схематическое изображение относительного положения генов, входящих в одну группу сцепления.

О положении гена в группе сцепления судят по проценту кроссинговера (количеству кроссоверных особей): чем больше процент кроссинговера или количество кроссоверных особей в F a , тем дальше будут расположены анализируемые гены/

Задачи на сцепленное наследование решаются аналогично задачам на моно- и дигибридное скрещивание. Однако при сцепленном наследовании гены, контролирующие развитие анализируемых признаков, локализованы в одной хромосоме. Поэтому наследование этих признаков не подчиняется законам Менделя.

Генотипы скрещиваемых особей и гибридов следует писать в хромосомной форме;

При записи генотипов следует учитывать расположение генов в хромосомах гомологичной пары (цис- или транс-положение). При цис-положении доминантные аллели генов находятся в одной хромосоме, а рецессивные – в другой. При транс-положении в хромосоме располагаются доминантная аллель одного гена и рецессивная – другого.

При полном сцеплении особь, гетерозиготная по всем рассматриваемым признакам, образует два типа гамет

При неполном сцеплении происходит образование кросоверных и некроссоверных гамет.

Количество некроссоверных гамет всегда больше, чем кроссоверных;

Организм всегда образует равное количество разных типов как кроссоверных, так и некроссоверных гамет;

Процентное соотношение кроссоверных и некроссоверных гамет зависит от расстояния между генами;

Если известно расстояние между генами (в процентах кроссинговера или морганидах), то количество кроссоверных гамет определенного типа можно вычислить по формуле

П = % кроссинговера (2)

где -количество кроссоверных гамет определенного типа;

Если известно количество кроссоверных особей, то процент кроссинговера между генами вычисляют по формуле (1)

Если рассматриваются признаки, гены которых входят в состав разных групп сцепления, то вероятность объединения генов разных групп сцепления в одной гамете равна произведению вероятностей каждого гена, образующего эту гамету.

Чтобы определить вероятность появления разных сортов зигот, надо перемножить частоты гамет, образующих эту зиготу.

У левкоев махровость поддерживается одним рецессивным геном s , доминирует простой цветок S . Доминантный аллель S сцеплен с рецессивным аллелем l , который вызывает отмирание пыльцы, а рецессивный s с доминантным L - нормально развитой пыльцой

У петуний неполное доминирование махровости, так что гетерозиготы Gg образуют слабо махровые цветки по сравнению с гомозиготами GG , дающими растение с махровыми цветками.

Имеется еще ген А - усилитель махровости, который действует не самостоятельно при наличии его (АА или Аа ) удается различать густо и слабомахровые растения, при отсутствии (аа )наблюдается моногибридное расщепление 3:1

У гвоздики турецкой махровость определяется одним рецессивным геном, вызывающим одновременно мужскую стерильность. Так как махровые растения могут служить лишь материнской формой, 100%-ая махровость в потомстве неосуществима.

Теоретически возможно получение 50%-ной при опылении махровых растений (ее ) простыми (Ее

У гвоздики садовой (формы Шабо, Маргарита, Венская, Гренадин) махровость определяется одним геном с неполным доминированием. Гомозиготы GG отличаются большей степенью махровости и почти полной мужской стерильностью. Гетерозиготы Gg образуют менее махровые цветки.

Наследование махровости редко бывает одинаковым и постоянным у различных сортов и форм одного и того же вида и тем более семейства. Особенно неустойчива она у видов и сортов семейства сложноцветных и в большей степени зависит от уровня агротехники и погодных условий.

Махровость у сложноцветных определяется несколькими или многими генами, большая часть которых имеет доминантное действие

Это относится к астрам, ноготкам, бархатцам и маргариткам.

Для поддержания махровости необходим постоянный массовый отбор махровых растений при сохранении достаточного количества растений с диском обоеполых трубчатых цветков в центре соцветия как источника пыльцы.

Тип урока: комбинированный.

Вид урока: объяснительно-иллюстрированный с элементами проблемного изложения.

Цель урока: Сформировать у учащихся понятие пола.

Задачи:

1. Показать, что признак пола наследуется так же, как и любой другой признак.

2. Указать на материальную основу признака пола, выраженного в виде половых хромосом (хромосомная теория определения пола).

3. Развивать и закреплять навыки и умения работы с учебной литературной, решения генетических задач.

Оборудование: Таблицы: “Оплодотворение”, “Обозначения, принятые и при составлении родословных”, “Родословная рода Виктории”, “Полное доминирование”, “Наследование, сцепленное с полом”; магнитные карточки-термины; набор для магнитной доски “Хромосомное определение пола”.

Ход урока

I Этап урока – подготовка к изучению нового материала, проверка и актуализация знаний.

Биологический диктант.

Учитель на магнитной доске поочередно выставляет карточки-термины, учащиеся фронтально устно отвечают:

  1. Аллель, аллельные гены.
  2. Гаметы.
  3. Зигота.
  4. Гомозигота.
  5. Гетерозигота.
  6. Генотип.
  7. Фенотип.
  8. Геном.
  9. Хромосомы.
  10. Сцепленные гены.
  11. Анализирующее скрещивание.

Тестирование. Проводится по заранее отпечатанным для каждого учащегося вопросам (можно использовать один или несколько вариантов).

1. Что такое ген?

  1. Молекула ДНК.
  2. Участок молекулы ДНК, несущий информации о первичной структуре одного белка.
  3. Участок ДНК, состоящий из трех нуклеотидов, кодирующих одну аминокислоту.

2. Что такое фенотип?

  1. Совокупность генов организма.
  2. Совокупность внешних признаков организма.
  3. Совокупность внешних и внутренних признаков организма.

3. Какие гены называются сцепленными?

  1. Проявляют свое действие в гомо- и гетерозиготном состоянии.
  2. Локализованный в одной хромосоме.

4. Перекрест хромосом – это:

  1. Разрыв хромосомы на 2 - 3 части.
  2. Спирализация хромосом.
  3. Обмен участками между двумя гомологичными хромосомами.

5. Впервые закономерности сцепленного наследования установил:

  1. Г. Мендель.
  2. Т. Морган.
  3. Р. Пеннет.
  4. Ф. Реди.

6. Какие гены называют аллельными?

  1. Локализованные в первой хромосоме.
  2. Проявляющие свое действие только в гомозиготном состоянии.
  3. Парные гены, расположенные в одинаковых локусах гомологичных хромосом и определяющие альтернативное развитие одного и того же признака.

7. Генотип – это:

  1. Совокупность генов первой хромосомы.
  2. Совокупность генов первого организма.
  3. Совокупность генов, находящихся в гамете.

8. Гамета – это:

  1. Мужская или женская половая клетка.
  2. Оплодотворенная яйцеклетка.
  3. Соматическая клетка.

9. Гетерозигота – это:

  1. Особь, которая в потомстве дает расцепление.
  2. Особь, которая в потомстве не дает расщепления.
  3. Оплодотворенная яйцеклетка.

10. У норок коричневый цвет доминирует над платиновым (полное доминирование). Чтобы узнать генотип коричневого самца на звероферме его скрестили с платиновой самкой. Как называется такое скрещивание?

  1. Анализирующее.
  2. Дигибридное.
  3. Полигибридное.

II этап урока – изучение нового материала

Учитель: мы выяснили, что материальными единицами (носителями) наследственности являются гены, находящиеся в хромосомах, которые передаются в составе гамет от родителей к потомкам. А как происходит наследование половых признаков, каковы материальные основы этих признаков, каковое соотношение полов в природе и в чем проявляются закономерности наследования признаков, сцепленных с полом? Это и есть задачи сегодняшнего урока, тема которого: “Генетика пола” . (записывает на доске, учащиеся – в тетрадях), на доске заранее записаны основные рассматриваемые вопросы).

1. Соотношение полов в природе.

Учитель обращает внимание, что у большинства раздельных организмов соотношение полов 1:1. Затем он задает классу проблемный вопрос: чем можно объяснить такое численное соотношение? Как правило, учащиеся затрудняются ответить. Следующий наводящий вопрос : при каком скрещивании наблюдается расщепление 1:1? (Ответ: при анализирующем скрещивании, если анализируемый организм гетерозиготен). Далее учащиеся высказывают предположение, что соотношение полов 1: 1 может быть в том случае, если один пол “гомозиготен”, а другой “гетерозиготен” по гену, определяющему половую принадлежность. Такую догадку высказал еще Г, Мендель. Впоследствии она была подтверждена генетическими опытами К. Корренса в 1907 году с растением переступень (Bryonia), Л. Лонкастера в 1906 году с бабочкой пяденицей крыжовичной (Abraxas grossularia).

Однако решающие доказательства гомо- и гетерозиготности полов дали цитологические исследования.

2. Хромосомное определение пола.

1. Гомогаметный и гетерогаметный пол.

Учитель предлагает учащимся решить задачу : В спортивных соревнованиях существует одна деликатная проблема, отдельные представители сильного пола пытаются соревноваться… с женщинами. У слабого пола пытается выиграть мужчина… в женском обличье! Выиграть – не в споре равных, а у тех, кто ему заведомо уступает. Оказывается, такое плутовство возможно. Существуют способы обмануть судей. Как не допустить появления на женских соревнованиях мужчин?

Предложите способ определения пола, который исключал бы любые ошибки. Ведь, как известно, внешность часто обманчива.

Возможны варианты ответов учащихся: за любые признаки отвечают гены и хромосомы, следовательно, можно провести анализ ДНК, рассмотреть хромосомы.

Учитель напоминает, что анализ ДНК – достаточно длительная и дорогостоящая операция, поэтому проще рассмотреть хромосомы, которые при соответствующей обработке видны в микроскоп.

Далее учитель предлагает школьникам рассмотреть рис.74 и рис.75 (параграф 3. 15., учебник Биология 10 – 11 базового уровня, В. И. Сивоглазов и др.), можно использовать демонстрационные таблицы “Хромосомное определение пола”, “Хромосомный набор организмов”) и ответить на вопрос: чем же отличаются хромосомные наборы женской и мужской зигот? (ответ: хромосомный набор женской и мужской зигот отличается одной парой хромосом. У человека 23-й; а у дрозофилы – 4-й).

Следующий вопрос: чем же определяются морфологические, физиологические, психологические особенности поведения мужчин и женщин? (ответ: наличием 23-й пары хромосом, в которой содержатся гены, определяющие половую принадлежность).

Учитель уточняет, что такие хромосомы называются половыми, а остальные – неполовые – аутосомы:

Хромосомный набор

  • аутосомы (неполовые)
  • половые (определяют пол)

Половые хромосомы женщин одинаковы, их называют Х-хромосомами, у мужчин имеется одна Х-хромосома и одна Y-хромосома, которая внешне сильно отличается он Х-хромосомы. Перепутать ХХ с ХY в кариотипе человека (да и любого другого организма) невозможно. Это и используется при проведении секс-контроля накануне крупнейших международных соревнований. Такая процедура проводится с 1968 года. С внутренней стороны щеки спортсменки берется соскоб эпителия, затем его красят специальным составом и рассматривают под микроскопом. В результате этого исследования в нашей стране только за 20 лет сняты с соревнований 16 человек.

Вернемся к вопросу о соотношении полов.

Задание классу: попробуйте самостоятельно, используя схему скрещивания (на примере дрозофилы – рис. 74 или человека – рис. 77), разобрать поведение половых хромосом при мейозе и оплодотворении и ответить на вопросы:

  1. От чего зависит пол организма?
  2. Какой пол считается гомогаметным? гетерогаметным?
  3. Чьи гаметы, отца или матери являются решающими при определении пола?
  4. В какой момент он определяется?

После выполнения задания первому учащемуся у доски предлагается ответить на предложенные вопросы с использованием демонстрационной таблицы “Оплодотворение”, другой же ученик поясняет ход рассуждений с помощью динамического пособия “Хромосомный механизм определения пола”.

Обсуждение выполнения задания и подведение итогов сопровождается поясняющей схемой на доске.

  1. Признак пола подчиняется тем же закономерностям, что и всякий другой. Он генетически предопределяется половыми хромосомами.
  2. При определении пола человека решающими являются гаметы мужчины, так как яйцеклетки женщины все одинаковы.
  3. Гомогаметный пол – пол, формирующий при мейозе только 1 тип гамет. Гетерогаметный пол – пол, формирующий при мейозе 2 типа гамет.
  4. Пол определяется в момент оплодотворения и зависит от того, какие гаметы встретятся (Х и Х или Х и Y).

Далее учитель задает классу вопрос: всегда ли самки гомогаметны, а самцы гетерогаметны? Как правило, из-за недостатка знаний, учащиеся затрудняются ответить. Тогда учитель предлагает найти ответ в учебнике (стр. 160 – 161).

Ответ: дигаметность (гетерогаметность) характерна не только для мужского пола, так, например, у птиц, бабочек, женский пол ZW, а мужской ZZ). Учитель поясняет, что ранее Х-хромосому обозначали Z, а Y- W, теперь от такой символики отказались.

2. Хромосомные наборы.

Цитологи при изучении мейоза различных животных пришли к выводу, что каждому виду организмов свойственен определенный тип хромосомного набора. Существует несколько типов, получивших название по тем животным, у которых впервые обнаружен тип ХY получивший название Lygaeus (травяной клоп) определен у млекопитающих (в том числе и человека), рыб, у двукрылых насекомых и двудомных растений, поэтому эти типы хромосомных наборов стали называть Drosophila, так как для них характерен гетерогаметный пол у самца и гомогаметныцй – у самки.

Тип хромосомного набора ХY, когда женский пол гетерогаметен, а мужской пол наоборот гомогаметен, обнаружен у бабочек и птиц, получил название Abraxas (бабочка крыжовенная пяденица).

Существует и иной механизм определения пола – ХО (хромосомный набор клопа Protento - тип Protentor).

Задание для закрепления.

Заполнить таблицу 1.

Таблица 1. Типы соотношения половых хромосом у животных .

Организмы Зиготы Гаметы Пол гетерогаметый Пол гомогаметный Тип хромосомного набора
Самки Самцы Яйцеклетки Сперматозоиды
Двукрылые насекомые, млекопитающие (в том числе человек), рыбы. XY Х и Х Х и Y Drosophila (дрозофила)
Бабочки, птицы ХY ХХ Х и Y Х и Х Abraxas (бабочка)
Прямокрылые,жуки, клопы, пауки, многоножки, нематоды. ХХ ХО Х и Х Х и О Protentor.

Тип хромосомного набора, а следовательно и пол определяется в момент оплодотворения и зависит от того, какие гаметы сольются (у кузнечиков):

Проблемный вопрос: как Вы считаете, у всех ли животных пол будущей особи определяется в момент оплодотворения? Обычно учащиеся отвечают, что у всех, либо затрудняются с ответом из-за недостатка знаний.

3. Типы определения пола.

Объяснение учителя (с одновременным заполнением таблицы 2 на доске). У человека, рыб, птиц, млекопитающих определение пола происходит в момент оплодотворения. Это наиболее распространенный сингамный тип определения пола.

Но существуют другие типы определения пола, происходящие на разных фазах цикла размножения и развития. Так у некоторых видов тлей коловраток, кольчецов оно осуществляется до оплодотворения – прогамно.

А у морского червя боннелия пол определяется и развивается эпигамно – после оплодотворения в процессе онтогенеза. Учитель рекомендует ознакомиться с информацией учебника (§ 3. 15. стр. 161).

Таблица 2. Типы определения пола
(из урока “Почему не бывает трехцветных котов”, журнал Биология в школе – 2005 № 4.)

Но каким бы не был механизм определения пола, вместе с половыми хромосомами наследуется определенные признаки.

Закономерности наследования, сцепленного с полом (объяснение учителя).

1. Признаки, сцепленные с половыми хромосомами.

Наследование признаков, контролируемых генами, локализованными в половых хромосомах, называется сцепленным с полом наследованием (учащиеся записывают в тетрадях.).

У человека определены все 23 теоретически возможных группы сцепления. Каждая из них содержит по нескольку сот генов. Более 100 генов локализовано в 23-й группе, то есть в половых хромосомах. Гены 22-х групп аутосом наследуются и мужчинами, и женщинами, независимо от пола. Признаки же, контролируемые генами половых хромосом, зависят от пола. Какие признаки содержат Х и Y – хромосомы? (самостоятельные работа учащихся по (параграф 3. 15. стр. 162, с последующими обсуждением с применением демонстрационной таблицы № 3).

Таблица 3. Наследование, сцепленное с полом.

с Х- хромосомой

с Y- хромосомой

1. Подавляющая часть генов 23-й группы сцепления находится в Х – хромосоме (то есть Y – хромосома почти “пуста”), большинство из них патологические. Все имеют рецессивный характер.

2. Гены, локализованные в Х – хромосомах, наследуются как по мужской линии (мать передает сыну Х – хромосому, а отец – Y), так и по женской линии:

3. Гены, которые находятся в Y – хромосоме передаются только по мужской линии и всегда находятся в гемизиготном состоянии (то есть у них нет пары, так как в Х – хромосоме они находиться не могут).

Чем же тогда можно объяснить следующие факты:

  • несвертываемостью крови? (Гемофилией)
  • цветовой слепоты? (Дальтонизмом)

Этими заболеваниями, сцепленными с Х- хромосомой, болеют, как правило, только мужчины. Первый случай гемофилии у женщин описан в 1951 году, а дальтонизмом страдают около 4 % мужского населения, но менее 1 % - женского.

Эту проблему учитель предлагает разрешить на примере этих двух заболеваний, записав и рассмотрев конкретные схемы скрещивания.

2. Наследование гемофилии (сообщение учащегося).

Гемофилия – болезнь, при которой нарушено свертывание крови, так что даже небольшой порез или царапина приводит к обильному кровотечению.

Вызвана она мутациями разных генов, контролирующих разные факторы свертывающей системы крови. Этих факторов всего 12, в частности, к ним относятся белки фибриноген, фибрин, протромбин, тромбин, ионы Са 2+ и др.

Различные мутации приводят к одному результату – фенотипическому проявлению гемофилии.

Таким образом, существует несколько видов этого заболевания. Наиболее часто встречается гемофилия А, вызванная рецессивной мутацией гена, контролирующего синтез антигемофилического глобулина-VIII - фактора свертывания. В этом случае наблюдается дефицит этого белка, что и обусловливает болезнь.

Так как ген рецессивен, то встречается заболевание очень редко и, как правило, у мужчин. Считается, что девочки-гемофилики (а у них заболевание будет проявляться только в гомозиготном состоянии Х h Х h), погибают еще в зародышевом состоянии.

Это страшная болезнь затронула и семью последнего российского императора Николая II. Отец Николая государь Александр III возражал против брака своего сына с Аликс-Викторией-Еленой-Бригиттой-Беатрисой принцессой Гессенской и Рейнской

(по другим источникам принцессой Гессен-Дармштадской). Одной из причин было то, что трон в государстве Российском наследовался по мужской линии, а было известно, что мужчины в роду принцессы редко доживали до преклонного возраста. Уже на смертном одре Александр III благословил брак Николая и Алисы, которая после крещения в православие приняла имя Александра Федоровна.

Опасения Александра III оказались не напрасными. Через год после бракосочетания, в ноябре 1895 года царица родила своего первого ребенка – дочь Ольгу. Затем подряд родились еще 3 девочки: Татьяна - 1897 год, Мария - 1899 год, Анастасия - 1901 год. Наконец, 30 июля (12 августа) 1904 года у дружной супружеской пары родился долгожданный наследник – царевич Алексей.

Но после рождения выяснилось, что мальчик болен страшной неизлечимой болезнью – гемофилией. Это стало трагедией царской семьи. Обычно с таким заболеванием редко доживают до зрелого возраста.

Болезнь наследника престола была объявлена государственной тайной, о которой знали только члены семьи и самые приближенные слуги.

Александра Федоровна с горя полностью ушла в религию. Алексей с детства находился под строгим контролем, его во многом ограничивали. Но, несмотря ни на что, царевич рос добрым, милым и смышленым мальчиком.

Вот как пишет об Алексее протопресвитер русской армии и флота о. Георгий Шавельский: “Благодаря необыкновенной простоте и сердечности в обращении Алексей Николаевич привлекал к себе все сердца как своей внешней, так и духовной красотой; его ясный, открытый взгляд, во всем проявляемая решительность, приятный звонкий голос – вызывали во всех его видевших, чувство глубочайшей симпатии. Господь наделил несчастного мальчика прекрасными природными качествами: сильным и быстрым умом, находчивостью, добрым и сострадательным сердцем, очаровательной и

Царей простотой; красоте духовной соответствовала и телесная. Алексей Николаевич быстро схватывал нить даже серьезного разговора, а в нужных случаях так же быстро находил подходящую шутку для ответа”

Для ответа запишите схему скрещивания (один учащийся работает у доски, остальные в тетрадях).

Х н – ген нормальной свертываемости крови

Х h – ген гемофилии

Вероятность рождения: сына гемофилика 25 % и здорового сына 25 %, тогда как у девочек заболевание проявляться не будет.

Или то же самое с помощью обозначений, принятых при составлении родословных (рис. 1).

При обсуждении и анализе записей скрещивания учащиеся при помощи учителя формируют выводы: ген гемофилии передается только по женской линии, то есть сын получает ген от матери вместе с Х – хромосомой, от отца он не может унаследовать это заболевание, так как Y – хромосома “пустая”. Таким образом мужчина – гемофилик гемизиготен и имеет генотип Х h Y.

Обращаясь к генеалогическому древу потомков королевы Виктории (рис. 2), учитель дополняет сведения о наследовании гемофилии.

На схеме указаны только те потомки, которые участвовали в передаче гемофилии или были поражены ею. Родословная британского королевского дома продолжена, чтобы показать почему гемофилия не проявлялась здесь ни у одного из потомков королевы Виктории на протяжении семи поколений. (Из Н. Грина, У. Стаута, Д. Тейлора. Т. 3, с. 241).

Изучение генеалогии европейских династий показало, что носительницей гемофилии была королева Виктория – бабушка Александры Федоровны. Виктория имела большое потомство (5 детей). Ее дочери вышли замуж за разных европейских правителей, и гемофилия проявилась в нескольких царствующих династиях: в прусской, русской и испанской. В английском королевском доме болезнь не проявилась, так как его продолжателем стал сын королевы Виктории Эдуард VII.

3. Наследование дальтонизма.

Для активизации познавательной деятельности учащихся, закрепления и развития навыков решения генетических задач учитель предлагает самостоятельно выполнить задание 4, с. 145 из рабочей тетради к учебнику В.И. Сивоглазова, И. Б. Агафоновой, Е.Т. Захарова.

Решение задачи

Ответ : 50 % детей будут дальтониками, 50 % - иметь нормальное цветовое зрение, но половина дочерей будут носителями.

При обсуждении решения задачи учащиеся делают вывод, что наследование дальтонизма подчиняется тем же закономерностям, что и наследование гемофилии – передается по материнской линии и проявляется преимущественно у мужчин.

У женщин дальтонизм (как и гемофилия) фенотипически выражен только в том случае, если оба родителя имели этот ген. Это бывает крайне редко, поэтому болезни, сцепленные с Х – хромосомой, как правило, “мужские”.

Обычно учащиеся отвечают, что встречаются только черепаховые кошки, но объяснить причину затрудняются. Для решения этого проблемного вопроса предлагается задача: У кошек ген черной и ген рыжей окраски сцеплены с половыми Х – хромосомами. Черная окраска (В) доминирует над рыжей (в), но гетерозиготные по этому гену особи дают трехцветную окраску. От трехцветной кошки родились черные котята, но среди них были один рыжий кот и трехцветная кошка, определите генотип и фенотип отца котят.

В – черная окраска.

b – рыжая окраска

В b – трехцветная окраска, так как гены окраски локализован в Х – хромосоме, то можно записать

Х В – черная окраска

Х b – рыжая окраска

Х В Х b – трехцветная окраска, это может быть только кошка, так как в y - хромосоме гена окраски нет, то кот может быть либо Х В Y – черный, либо Х b Y– рыжий.

Среди котят есть трехцветная кошка, ее генотип Х В Х b , где один ген она получила от матери, а другой – от отца. От отца она могла унаследовать только Х b , так как среди котят есть рыжий кот, который имеет генотип Х b Y, Y – хромосому он получил от отца, следовательно Х b - от матери.

Запись скрещивания:

Из решения этой задачи ребята делают вывод , что трехцветных котов не бывает, так как такая окраска проявляется в гетерозиготном состоянии, а кот по окраске гемизиготен.

Практическое значение знаний о наследовании, сцепленном с полом (лекция)

Пример с окраской шерсти у кошек интересен в познавательном плане, так как в обиходе почти все мы имеем дело с домашними животными и многие держат дома кошек. Но, помимо этого, изучение генетики пола и сцепленного с ним наследования имеет большое значение в практике животноводства.

Генетик Струнников, применяя метод экспериментальной перестройки хромосом, создал линию шелкопряда, у которой пол сцеплен с окраской яиц. Яйца самок имеют темную окраску, яйца самцов – светлую. С помощью фотоэлементов машинным способом можно отсортировать и пустить на откорм только мужских гусениц, которые дают выход шелка на 25 – 30 % выше.

Выведение таких как бы меченых по полу животных перспективно для куроводства, разведение осетровых рыб, тонкорунного овцеводства (настриг шерсти с баранов в 1,5 – 2 раза больше) и т. д.

III этап урока – закрепление, формулирование выводов, подведение итогов

Фронтальная беседа .

  1. Что является материальной основой половых признаков?
  2. Как происходит наследование половых признаков, подчиняется ли оно общим правилам Менделеевского расщепления?
  3. Почему соотношение полов в природе 1: 1?
  4. Каковы закономерности наследования, сцепленного с полом?

Выводы. (записываются на доске и в тетрадях).

  1. Материальные основы половых признаков – половые хромосомы.
  2. Признак пола наследуется так же, как и всякий другой.
  3. Вместе с признаком пола в составе Х – хромосом передаются и другие гены – “наследование, сцепленное с полом”.
  4. Изучение сцепленного с полом наследования имеет большое практическое значение.

IV этап урока – домашнее задание

Изучить параграфы 3 – 15. Ответить на вопросы 1 – 6 (с. 164). Решить задачу

Решить задачи (по желанию):

  1. У кур, гены, определяющие окраску, локализованы в Х – хромосоме. У одной из пород кур ген серебристого оперения (А) доминирует над геном золотистого оперения (а). С каким генотипом следует подбирать кур и петухов, чтобы определять пол цыплят по оперению?
  2. Рецессивный ген гемофилии находится в Х – хромосоме. Отец девушки страдает гемофилией, тогда как ее мать в этом отношении здорова и происходит из семьи благополучной по этому заболеванию. Девушка выходит замуж за здорового юношу. Что можно сказать о их будущих сыновьях, дочерях, а также внуках обоего пола (при условии, что сыновья и дочери не будут вступать в брак с носителями гена гемофилии)?

Литература.

  1. Агафонова И. Б., Сивоглазов В.И., Я. В. Кошелевская. Рабочая тетрадь к учебнику В.И. Сивоглазова, И.Б. Агафоновой, Е.Т. Захаровой. Биология 10 – 11 базовый уровень. – часть 1. – М.: Дрофа 2007.
  2. Вили К., Детье В. Биология Пер. с англ. М: Мир, 1975.
  3. Галушкова Н.И. Биология для поступающих в ВУЗы. Способы решения задач по генетике. Волгоград: Братья Гринины 2000.
  4. Дубинин Н.П. Генетика и человек. Кн. для внеклассного чтения IX – X кл., М., Просвещение, 1978.
  5. Киселева З.С., Мягкова А.Н. Методика преподавания факультативного курса по генетике. М.: Просвещение 1979.
  6. Корсунская В.М., Мироненко Г.Н., Моксева З.А., Верзилин Н.М. Уроки общей биологии. М.: Просвещение 1986.
  7. Модестов С.Ю. Сборник творческих задач по биологии, экологии и ОБЖ. Санкт – Петербург: Акцидент 1998.
  8. Сивоглазов В.И., Агафонова И.Б., Захарова Е.Т. Биология. Общая биология. Базовый уровень: учебн. для 10 – 11 кл. общеобразовательных учреждений. М.: Дрофа: 2007.
  9. Смелова В.Г. Почему не бывает трехцветных котов? Урок о генетике пола. Биология в школе, 2005. № 4.

Aллель - вариант (состояние) гена, локализованного в определенном локусе (месте) хромосомы.

Aллельные гены - гены, расположенные в одинаковых (идентичных) локусах гомологичных хромосом.

Аллели множественные - гены, представленные в популяции более чем в двух разных вариантах (состояниях). Механизм возникновения ­независимые генные мутации во дном локусе хромосомы.

Множественные аллели определяют варианты_ одного признака. Например, система групп крови АВО У человека кодируется тремя генами: Ja, Jb,i

Аутосомы - неполовые хромосомы, имеющие одинаковые размеры и форму у особей разных полов. У человека обозначаются цифрами от 1 до 22. Совокупности генов одной и той же аутосомы у разных индивидуумов отличаются комбинациями доминантных и рецессивных генов.

Гамета - половая клетка организма (яйцеклетка или сперматозоид).

Гаплоидный набор хромосом - определяется, как правило, в гаметах и содержит одну из каждой пары аутосом и одну половую хромосому (Х или У).

Гемизиготный генотип - генотип, в котором представлен только один аллельный ген. В норме, это характерно для генов, локализованных в негомологичных участках половых хромосом. В гемизиготном состоянии единственная аллель всегда проявляет себя в фенотипе.

Геном - совокупность генов всех особей определенного вида.

Генотип - совокупность всех генов диплоидной (соматической) клетки (в т.ч. митохондрий и пластид).

Генофонд - совокупность всех генов, определяющих у особей определенной популяции.

Гетерозиготный организм - особь, У которой в идентичных локусах гомологичных хромосом располагаются разные аллельные гены. При скрещивании гетерозиготных организмов происходит расщепление по генотипу и фенотипу в соответствии с законами Г.Менделя.

Гомозиготный организм - особь, у которой в идентичных локусax гомологичных хромосом располагаются одинаковые аллельные гены: оба доминантных (гомозиготный доминантный генотип) или оба рецессивных (гомозиготный рецессивный генотип).

Диплоидный набор хромосом - полный парный набор хромосом, содержащийся в соматических клетках (все клетки организма, за исключением половых).

Доминантный ген - ген, признак которого обычно проявляется у гетерозиготных организмов. Степень проявления доминантности зависит от формы взаимодействия аллельныx генов.

Доминирование полное - форма взаимодействия аллельных генов, при которой доминантный ген полностью подавляет действие рецессивного гена и фенотип гомозиготных доминантных и гетерозиготных организмов сходный.

Доминирование неполное - форма взаимодействия aллельных генов, при которой имеет место промежуточное проявление признака у гетерозиготных организмов по сравнению с гомозиготными. При этом степень проявления признака имеет следующую последовательность: АА > Аа > аа.

Кариотип - диплоидный набор хромосом, характеризующийся совокупностью признаков (число, форма, особенность дифференциального окрашивания). Кариотип является важнейшей цитогенетической характеристикой вида.

Кодоминирование - форма взаимодействия аллельных генов, при которой два разных доминантных аллельных генов проявляют себя. в фенотипе в равной степени. Пример, IV группу крови у человека определяет генотип JA J в.

Менделирующие признаки - наследственные признаки, которые контролируются аллеJ1!>НЫМИ генами и наследование их происходит в соответствии с законами моногибридного скрещивания Г.Менделя.

Наследование - способ передачи наследственной информации между поколениями. Варианты наследования зависят от локализации ДНК в структурных компонентах клетки. Различают аутосомное, X-сцепленное, голандрическое (У -сцепленное) и цитоплазматическое наследование.

Наследственность - общее свойство живых организмов обеспечивать структурную и функциональную преемственность между поколениями, а также специфический характер индивидуального развития.

Признак - любое свойство или качество (морфологическое биохимическое, иммунологическое, клиническое), которое отличает один организм от другого.

Фенотип - совокупность всех признаков организма.

Хромосомы половые - хромосомы, определяющие генетический пол организма - Х и У. У человека женский пол является гомогаметным – в яйцеклетках содержатся по одной Х-хромосоме (кариотип женщин ­46,ХХ), а мужской пол является гетерогаметным - в сперматозоидах находится либо Х-хромосома, либо У-хромосома (кариотип мужчин ­46,ХУ).

Хромосомы гомологичные - хромосомы, имеющие одинаковую ДЛИНУ: форму и характерные особенности дифференциального окрашивания. В диплоидном наборе содержатся 2 гомологичные хромосомы - аутосомы с 1 по 22 пары, у женщин - две Х-хромосомы. У мужчин половые хромосомы (Х и у) являются негомологичными.

1. Биология /Под редакцией В.Н.Ярыгина. в 2-х кн. М., Высшая школа, 2006. -кн. l, с. 61-65, 88-90, 115-125, 137-141, 155-158,222-227.

2. Лекционный материал

Темы учебно-исследовательской работы студентов: 1. Зарождение и становление генетики как науки. Научные труды



Г.Менделя, А.Вейсмана, х.де Фриза, В.Иоганнсена, Т.Моргана.

2. Генетические исследования в СССР.

3. Менделирующие признаки человека: норма и патология.

Сцепленное наследование. Г. Мендель опубликовал результаты своих исследований в 1865 г., однако тогда его открытия остались незамеченными. Только в 1900 г. К-Корренс (Германия), Г. де Фриз (Голландия) и Э. Чер мак (Австрия) независимо друг от друга обнаружили у разных видов растений те же закономерности наследования признаков, что и Г. Мендель. Английский генетик У. Бэтсон подтвердил законы Менделя на животных. Переоткрытие законов Менделя вызвало глубокий интерес к изучению закономерностей наследования признаков и способствовало быстрому развитию генетики.

В 1902 г. немецкий цитолог и эмбриолог Т. Б о в е р и представил доказательства участия хромосом в процессах передачи наследственной информации. Он показал, например, что нормальное развитие морского ежа возможно лишь при наличии всех хромосом. Подобную связь заметил в 1903 г. и американский цитологУ. С эттон. Так получили обоснование предположения Менделя

о наследственных факторах, о наличии одинарного набора этих факторов в гаметах и двойного - в зиготах. В 1909 г. датский биолог В. Иогансен ввел понятие s.ген:/.

В 1910 г. американский генетик Т. Морган экспериментально доказал, что гены расположены в хромосомах. Многочисленные исследования Моргана и его учеников привели к целому ряду важнейших открытий, которые легли в основу хромосомной теории наследственности. Одно из ее положений можно сформулировать следующим образом: гены расположены в хромосомах в линейном порядке и занимают определенные участки - локусы, причем аллельные гены находятся в одинаковых локусах гомологичных хромосом.

Закон независимого наследования (третий закон Менделя) справедлив в том случае, если неаллельные гены находятся в разных парах хромосом. Однако количество генов у живых организмов значительно больше числа хромосом. Например, у человека около 25 тыс. генов, а количество хромосом -

23 пары (2п = 46); у плодовой мушки дрозофилы приблизительно 14 тыс. генов и всего 4 пары хромосом (2п = 8). Следовательно, каждая хромосома содержит множество генов. Будут ли гены, локализованные в одной хромосоме, наследоваться независимо? Очевидно, что нет.

Гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются вместе. Совместное наследование генов Т. Морган предложил называть сцепленным наследованием (в отличие от независимого). Каждая пара гомологичных хромосом содержит гены, контролирующие одни и те же признаки, поэтому количество групп сцепления равно числу пар хромосом. Например, у человека 23 группы сцепления, а у дрозофилы - 4.

Вам известно, что при независимом наследовании дигетерозиготная особь, например =^=, образует четыре типа гамет в равном соотношении, т. е. по 25 %: Л В, АЬ, а В и ab. Это обусловлено тем, что неаллельные гены находятся в разных парах хромосом. Если же они расположены в гомологичных хромосомах, следовало бы ожидать, что дигетерозигота будет производить лишь два типа га- ab

мет: 50 % АВ и 50 % ab (обратите внимание на то, что сцепленные гены записываются в одну хромосому).

Однако Т. Морган обнаружил, что в большинстве случаев дигетерозиготные особи образуют не два, а четыре типа гамет. Помимо ожидаемых АВ и ab формируются также гаметы с новыми комбинациями генов: АЬ и аВ, только в меньшем процентном соотношении. Рассмотрим один из экспериментов Т. Моргана, в котором изучалось наследование сцепленных генов у дрозофилы.

Если почистить фрукты или овощи и не сразу выбросить очистки либо оставить фрукты на столе на несколько дней, то можно заметить, как вокруг остатков пищи начнут роиться маленькие мушки размером около 2-3,5 мм. Это дрозофилы - плодовые мушки, род насекомых отряда Двукрылые (рис. 95). Обычно дрозофилы имеют красные глаза и желтокоричневую окраску брюшка. Жизненный цикл дрозофил короток: развитие от яйца до половозрелой особи при 25 °С занимает 10 дней. Небольшие размеры, высокая плодовитость, простота культивирования и ряд других особенностей на долгое время сделали дрозофилу главным объектом генетики. Не один нобелевский лауреат, кроме своего интеллекта, обязан ей своими научными достижениями.

Путем скрещивания чистой линии дрозофил, имеющих серое тело и нормальные (длинные) крылья, с чистой линией, особи которой имели черное тело и зачаточные крылья, были получены гибриды первого поколения (рис. 96). Все они в соответствии с законом единообразия были серыми с нормально развитыми крыльями. Следовательно, у дрозофил серое тело (А) полностью доминирует над черным (а), а нормальные крылья (В) - над зачаточными (b ). Все гибриды первого поколения - дигетерозиготы.

Затем было проведено анализирующее скрещивание (рис. 97). Дигетерозиготную самку из гибридного поколения скрестили с рецессивным дигомозиготным самцом (черное тело и зачаточные крылья). В потомстве было получено по 41,5 % особей с серым телом, нормальными крыльями и черным телом, зачаточными крыльями, а также по 8,5 % мух с серым телом, зачаточными крыльями и черным телом, нормальными крыльями.

Если бы гены, определяющие цвет тела и развитие крыльев, находились в разных парах хромосом, соотношение фенотипических классов было бы равным - по 25 %. Но этого не наблюдалось, значит, гены находятся в гомологичных хромосомах и наследуются сцепленно.

Несмотря на сцепление генов, АВ самка производила не два, а четыре типа гамет. Однако гамет с исходными сочетаниями сцепленных генов формировалось намного больше (АВ и ab вместе составили 83 %), чем с новыми их сочетаниями (сумма АЬ и дВ равна 17 %).

Было выяснено, что причиной появления хромосом с новыми комбинациями родительских генов является кроссинговер. Вы помните, что этот процесс происходит в профазе I мейоза и представляет собой обмен соответствующими участками между гомологичными хромосомами. Таким образом, кроссинговер препятствует полному (абсолютному) сцеплению генов. Гаметы, которые образуются в результате кроссинговера, и особи, которые развиваются при участии таких гамет, называются кроссоверными или рекомбинантными. В рассмотренном эксперименте гаметы АЬ и аВ являлись кроссоверными, а гаметы АВ и ab - некроссоверными (см. рис. 97).

Кроссинговер между конкретными сцепленными генами происходит с определенной вероятностью (частотой). Для расчета частоты кроссинговера (rf, от англ. recombination frequency - частота рекомбинации) можно пользоваться следующей формулой:

Таким образом, между генами А и В, контролирующими цвет тела и длину крыльев дрозофилы, кроссинговер происходит с частотой: rf AB = 17 %.

Дальнейшие исследования, проведенные Т. Морганом и его сотрудниками, показали, что частота кроссинговера пропорциональна расстоянию между генами, расположенными в одной хромосоме. Чем больше расстояние между сцепленными генами, тем чаще между ними происходит кроссинговер. И наоборот, чем ближе друг к другу расположены гены, тем меньше частота кроссинговера между ними. Чем объясняется эта закономерность?

В профазе I мейоза при конъюгации гомологичных хромосом образование перекрестов между хроматидами осуществляется произвольно, на любых соответствующих участках. Рассмотрим рисунок 98.

Гены А и В (или а. и Ь) находятся сравнительно близко друг к другу. Вероятность того, что перекрест произойдет именно на участке, разделяющем эти гены, невелика. Гены А и D (или а. и d) располагаются на значительном расстоянии друг от друга. Поэтому вероятность того, что хроматиды перекрестятся на каком-либо участке между ними, намного выше. Значит, чем больше расстояние между генами, тем чаще они разделяются при кроссинговере.

Таким образом, частота кроссинговера позволяет судить о расстоянии между генами. В честь Т. Моргана единица измерения расстояния между генами получила название моргай и да или, что то же самое, санти моргай и да (сМ).

Морганида (сантиморганида, сМ) - это генетическое расстояние, на котором кроссинговер происходит с вероятностью 1 %.

Биологическое значение кроссинговера чрезвычайно велико. В результате этого процесса возникают новые комбинации родительских генов, что повышает генетическое разнообразие потомства и расширяет возможности адаптации организмов к различным условиям окружающей среды.

Генетические карты. Т. Морган и сотрудники его лаборатории показали, что знание частоты кроссинговера между сцепленными генами позволяет строить генетические карты хромосом. Генетическая карта представляет собой схему взаимного расположения генов, находящихся в одной группе сцепления, с учетом расстояний между ними (рис. 99).

Генетические карты хромосом уже составлены для человека, многих видов животных, растений, грибов и микроорганизмов. Наличие генетической карты свидетельствует о высокой степени изученности того или иного вида организма и представляет большой научный интерес. Такой организм является прекрасным объектом для проведения дальнейших экспериментальных работ, имеющих не только научное, но и практическое значение. В частности, знание генетических карт позволяет планировать работы по получению организмов с определенными сочетаниями признаков, что широко применяется в селекционной практике. Генетические карты хромосом человека используются в медицине для диагностики и лечения ряда наследственных заболеваний.

Основные положения хромосомной теории наследственности.

1. Гены в хромосомах расположены линейно, в определенной последовательности. Аллельные гены находятся в одинаковых локусах гомологичных хромосом.

2. Гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются вместе. Количество групп сцепления равно числу пар хромосом.

3. Сцепление генов может нарушаться в результате кроссинговера, происходящего при конъюгации гомологичных хромосом в профазе I мейоза.

4. Частота кроссинговера пропорциональна расстоянию между генами: чем больше расстояние, тем выше частота кроссинговера, и наоборот.

Б. За единицу расстояния между сцепленными генами принята 1 морганида - расстояние, на котором кроссинговер происходит с вероятностью 1 %.